AN \CCOUN'I OF 'THE
 ALOYONARIANS
 COLLECTED BY THE
 ROYAL, INDIAN MARINE SURVEY SHIP

 INVESTIGATOR

 INVESTIGATOR}

IN THE:

INDIAN OCEAN

BY
J. ARTHUR THOMSON, MA.,
regius professor of natural history in the university of aberdeen
AND
W. D. HENDERSON, M.A., B.Sc., carnegie fellow, university of aberbeen

I. THE ALCYONARIANS OF THE DEEP SEA

CALCUTTA:
PRINTED BY ORDER OF THE TRUSTEES OF THE INDIAN MUSEUM

1906

INTRODUCTION.

This memoir contains a description of the rich collection of Deep-Sea Alcyonarians made by the Royal Indian Marine Survey Ship "Investigator" in the Indian (Icean. ${ }^{1}$ It will be followed by another dealing with the littoral forms.

The collection includes eighty-six speeies, of whieh sixty-one (and three varieties) are new. It has been found necessary to establish five new genera, Stereacanthia and Agaricoides in the family Nephthyide, subfamily Siphonogorgine; Acanthomuricea and Calicogorgie in the family Muriceide; and Thesioides in the family Kophobelemmonidæ. The general position of the new forms is as follows :

[^0]
Aove Tigpes.

The genus Sterecterenther, from the Andamans, is a Siphonogorgid in the vicinity of Lemonalic. A bare, densely spiculose trunk, made up of large longitudinal canals, with thin spiculose walls, bears a branched polyparium with the polyps disposed singly or in small crowded bundles; the aboral bands of spicules on the infolded tentades form a simple pseudo-operenlom; the spieules are warty spindles or golfelub forms, and there are no ghadrimatiate double-stars as in Lematia.

The genus Agaricnides, from $6^{\circ} 31^{\prime} \mathrm{N} ., 7933^{\prime}+5^{\prime \prime} \mathrm{E}$, is a remarkable Siphonogorgid perhaps distinctly related to Lemnalia (Gray, emend. Bourne), but quite mulike any other type known to ns. It is muhranched, mushoom-like, with complex octagonal verruce, pedicelled anthocodie, introversible zooids, a tentacular operculum, echinate spindles and hockey-club forms, and many peculiarities of strincture.

The genns Acenthomuricert, represented ly A. ramosa from $7^{\circ} 55^{\prime} \mathrm{N} ., 81^{\circ}$ 47^{\prime} E., 506 fathoms, and A. spicate from $6^{\circ} 31^{\prime}$ N., $79^{\circ} 38^{\prime} 45^{\prime \prime}$ E., 401 fathoms, is a Murieeid, perhaps related to Placoyorgia (Wright and Studer). The two species are upright colonies, irregularly branched in one plane, with thin bark-like ecenenclymat of rougl imbrisating seales, with prominent verruce on all siles, with conical tentacular opercula, and with very heterogeneous spiculation.

The genns Calicogorgia, represented by C'. investigatoris from $11^{\circ} 14^{\prime} 30^{\prime \prime}$ N., $7 t^{\circ} 57^{\prime} 15^{\prime \prime}$ E., 68-148 fathoms, and C. rubrotincta from the Bay of Bengal, 88 fathoms, is a Muriceid, probally related to Verrill's somewhat vaguely defined Anthogorgite. The colonies are irregularly hranched in one plane, the verruce are prominent with spicules in cight banls, with a conical operculum consisting of a crown and points, with warty spindles straight or curved.

The genus Thesioides, from $18^{\circ} 0^{\prime} 15^{\prime \prime} \mathrm{N} ., 93^{\circ} 30^{\prime} 45^{\prime \prime}$ E., 448 fathoms, and $16^{\circ} 25^{\prime} \mathrm{N} ., 93^{\circ} 43^{\prime} 30^{\prime \prime} \mathrm{E}$., 463 fathoms, is a Kophobelemnonid, near Bathyptitum, with a greatly elongated slender rachis borne by a short stalk withont pinnules, with long slender antozooids without calyces and without any spicules.

Notes on some new Sipecies.

Symportium, sp. We have described six new speeies of Symportium, but it seems that in this genus, as in other simple forms like Clavelaria, there is considerable variability in the specific characters. It may also be that a colony differs considerahly according to the substratmon which it grows,- a vegetable axis in S' indicem and S. decipiens, an Antipatharian axis in S. granetosum, a sponge spicnle in S. incrustens, at cluster of sponge spicules in S. tenue, a sponge skeleton in S. pelchrum. It is not easy at present to give distinctive diagnoses of our six forms, and yet the tout ensemble of the characters of each results in a
quite characteristic appearance. Without a large number of specimens for comparison, it must remain a matter of personal opinion whether the presence or absence of quadriradiate spicules or of ovals, the presence or alsence of eight longitudinal ridges of spicules on the calys, the occurrence of the polyps singly, or in groups, or in bundles, and marked dimensional differences in the calyces and spicules, are of taxonomic importance or not. For the convenience of subsequent workers we have attached names to these forms of Symporlium which differ superficially and in minute detail. References to S. sp., S. sp. (?), S. sp. a, and the like are tedious and confusing. It is probable that the investigation of a large number of representatives, which this collection did not include, will show that the differences between our six species are variational or morlificational.

Of much interest, and at first very perplexing, is the stalkless form of Sarcophytum aberrans, which enerusts a hage sponge spienle. Sarcophytum agaricoides is an exceptionally beautiful representative of this interesting genus.

The genus s'pongodes is represented in this collection by two new species, but there is a large representation in the littoral collection; Chironephethya macrospiculata is noteworthy in its very large spicules, which may exceed 8 millimetres in length.

Paragorgia splendens is near Gray's P. nodosa; but as that form is very vaguely described, we have established a new species. It is quite different from the P. nodosa deseribed as a new species by Koren and Damielssen. The Indian Ocean representative of Feroëides gracilis, Whitelegge, differs from the Australian representative in a number of details which we regard as merely variational. Parisis indica is near Verrill's P. fruticosa; the tessellated appearance of the cenenchyma is characteristic. Plewocorallium variabile is near Gray's I '. johnsoni; but there is again the diffieulty of the vagueness of previous description. In these and other cases, where we have not seen the type-specimens, we have had to choose between the alternative of asserting that our form is the same as one previously described very inadeqnately, or giving a new name, aud we have usually preferred the latter.

Among the new Chrysogorgids, the most striking is Chrysogorgia indica, represented by fragments with dichotomous branching, and with white polyps sharply contrasted with the deep bronze of the axis. Among the Isidæ, Ceratoisis gracilis is a beautiful form, with long slender polyps arranged in a sinistrorse two-third spiral; Acanella robusta differs from A. rigida, Wright and Studer, in the arrangement of the polyps and in their spiculation. The Primuoid Caligenger indier, distinguished by Dr. Versluys from its near allies C. simitis and C^{\prime}. vershaysi, is of interest in showing afresh the interlinking of species.

It is very difficult to locate some of the Muriceids. In describing Authogorgia verilli we have tried to give a little more sulstance to Verrill's diagnosis of the genus; the two species of Calicogorgia seem nearly allied to Antho-
gorgia. We have given comparative tables of the species of Acanthogorgia and Actamptogorgie which show, at least, how quantitative many of the specific distinctions are. One may safely predict that when type-specimens of all the different species described are brought together and compared, some simplification will be possible. The same is doubtless true in regard to the species of Acis aud Muricellu; and although we have been forced to name two new species, Acis spinosa and Drwicella benyalensis, sulserpuent study of some representatives in the littoral collection has shown us that the spienles vary within such wide limits even in the same colony, that these and other species must be regarded as simply tentative. Among the Pennatulacea there are some particularly interesting species, e.g. Protocuabon indicum, another member of the genus which has been hitherto represented only by Kölliker's Protocculon molle ; Protoptilum medium, which seems to occupy a position intermediate hetween Protoptilum aberrans, Kölliker, and Protoptilum sarpenteri, Köliker ; Sclevobelemnon köllikeri, which raises doults as to the warrant for separating the two closely allied genera Kophobelemnon and Selerobelemun; Bathyptilum indierm, which comes near Bathyptitom earpenteri; Thesioides inermis, already referred to.

The species of Umbellula raise the same difficulties as those of Sympodiom, etc.,-difficulties which we see no way of removing without a large number of specimens. Again we find forms which differ from one another in their tout ensemble of characters, though no one character by itself is very significant.

In dealing with a specimen which agrees well with Kölliker's Leptoptitum gracile, we have accepted the conclusion of Grieg and Jungersen, that this is but a young stage of the familiar Funioutina quadrangularis. It is a little remarkable, however, that the large adult forms of this species should have escaped the collectors. It may be that our Leptoptitum gracile is the young stage of another species of Funiculina which we have called gracilis.

Accepting Jungersen's arguments, we have described Nicroptilum willemoësii, Külliker, as Pavonaria willemoësii.

In some ways the most beautiful specimens in a collection rich in fine forms are the Pemuatulids, - Pennatula indica, Pennatula venoris, Pematula splendens, and Penatula pendula.

Viviparity.

In 1900, Professor S. J. Jiekson amonneed his diseovery of embryos in situ inl forgomict rapensis,- the first case of viviparity that he had observed in his wide and prolonged study of Alcyonarians.

He pointed out, however, that viviparity had been previously reported, and we cruote his references:
"Lacaze-Duthiers proved the precious coral to be viviparons, and according to Mlarion and Kowalewsky the 'Clavulaires petricoles' are viviparons, lout the
'Clavulaires des Posidonies' are oviparous. Siymportium (Alcyonium) corcolloides is, according to these anthors, viviparons. Koren and Danielssen state that three species of Nephthya, found at depths of 269-761 fathoms, are viviparous. These are, I believe, the only authenticated cases of viviparity among Alcyonarians hitherto recorded. Gorgonio copensis affords the first instance of viviparity that I have come across in my studies of Alcyonarians."

In Professor W. A. Herdman's collection from Ceylon we also found embryos in situ in Gorgonia capensis, Hickson. Corroborating Marion and Kowalewsky, we found embryos in Clavitaria pregnans, Th. and H., and Clavularia parvela, Th. and H., collected by Mr. Cyril Crossland, B.Sc., from Zanzibar and Cape Verde Islands respectively.

In the present collection we hare found embryos-blastulæ, gastrulæ, and slightly more adranced stages in the following species:

Sarcophytum aberrans, n. sp. (From 254 fathoms.)
Chrysogorgia flexilis, Wright and Studer. (Fron 401, 457-589, 606, and 669 fathoms.)
Ceratoisis gracilis, n. sp. (From 270-45 fathoms.)
Paramuricea indica, n. sp. (From 265 fathoms.)
Distichoptilum gracile, Verrill. (From 836 fathoms.)
Umbellula elongata, n. sp. (From 360 fathoms.)
Funiculina gracilis, n. sp. (From 406 fathoms.)
Pennatela indica, n. sp. (From 463, 487, and 824 fathoms.)
Meanwhile Mr. James J. Simpson, M.A., has also found embryos in specimens of Isis hippuris, included in the littoral collection. (See Journ. Linn. Soc. (Zool.) 1906.)

It is therefore clear that viviparity is ly no means uncommon in Alcyonarians, and it will be interesting to discover if it is particularly characteristic of deep-sea forms. (See Thomson and Henderson, Zool. Anseiger, 1906.) We hope, when time permits, to study the embryos more carefully.

Geographical Distrilution.
There are 25 species in the collection which have been previonsly described, and we give a list of the localities where these have been fond, reserving further discussion for the second memoir on the littoral forms. It may be noted that of the 25 -

1	was inclurlerl in the "Alert" collection.		
3 were	"	" Funafuti	"
1	.	" South African	"
1	". Seotia"	"	"Hirondelle"
2	,$"$	"	"

Chiromephthya variahitis, Hiekson. Ceylon (Herdman), Maldives (Gardiner).
Suberogorgiot liollikeri, Wright and Studer. Japan (Challenger), Ceylon (Herdman), Zanzibar (Crossland).
Keroëides koreni, Wright and Stuler. Japan (Challenger), Fumafuti (Hiles).
Kerö̈rdes gracilis, Whitelegge. Funafuti (Whitelegge), British New Guinea (Willey), Ceylon (Herdman).
Lepielogorgiu verrilli, Wright and Studer. Japan (Challenger), Macassar Straits (Siboga).
Chrysogorgice micnalis, Yershys. East Indian Archipelago (Siboga).
Chrysogorgiee flexilis, Wright and Studer. Chiloe (Challenger), East Indian Archipelago (Siboga).
Acanella rigiula, Wright and Studer: Off Banda (Challenger).
Stachyodes allmami, Wright and Studer. Fiji (Challenger'), Celebes (Siboga).
Thonchella moseleyi, Wright and Studer. Kermadec Islands (Challenger), Flores (Siboga).
Creligorgia flubellum, Ehrenberg. Near Mamitius, Last Pacifie off Central America, Japan, East Indian Arehipelago (Siboga).
Acanthogorgia respere, Pomtales. Havana, Azores (IIirondelle); as = A. spinosa, ILiles?, Sandal Bay, Lifu (Willey).
Acamptogorgia bebrycoides, von Koch. Nediterranean (ron Koch), Azores (Hirondelle).
Callistephamus koremi, Wright and Studer. Off Ascension (Challenger).
Nicolla flabellata (Whitelegge) $=$ Vermucella flabellata, Whitelegge. Funafut (Whitelegge).
Juncelle slongata, Pallas. Atlantic (Pallas), West Indies (Ellis and Solander); variety from N.E. roast of Iustralia (Ridley); variety, copensis, Algoa Bay (Hickson).
sérperrollu moniliforme, Wright and Studer. Amboina (Challenger).
Telesto ciflowt, Hiekson and Hiles. Blanche Bay, New Britain (Willey).
Telesto mbra, Hickson. Maldives (Gardiner), Ceylon (Herdman).
Distichoptilmm gracile, Verrill. Nantneket (Verill), $0^{\circ} 4^{\prime} \mathrm{S}, 90^{\circ} 24^{\prime} 30^{\prime \prime} \mathrm{VV}$, $61^{\circ} 39^{\prime} \mathrm{N} ., 17^{\circ} 10^{\prime} \mathrm{W} .\left(\right.$ Imgersen) ; $23^{\prime \prime} 59^{\prime} \mathrm{N} ., 108^{\circ} 40^{\prime} \mathrm{W} ., 1 \quad 7^{\prime} \mathrm{N} .$, $80^{\circ} \because 1^{\prime} \mathrm{W}$. (Sturler).
Kophobelemnon burgeri, Herklots. Japan.
Umbellula durissima, Kölliker. Japan, N . of Yeddo (Challenger'), $48^{\circ} 06^{\prime} \mathrm{S}$.. $10^{\circ} 5^{\prime} \mathrm{II}$. (Scotia).

Anthoptilum murrayi, Kölliker. N. Atlantic, S. of Halifax (Challenger) ; E. coast of N. America (Verrill); Bay of Gascony, S. of Iccland (Jungersen).
Funiculina quadrangularis (Pallas)=Leptoptilum gracile, Kölliker. New Zealand, as L. gracile (Challenger) ; as F. quadicengularis, North Sca, Atlantic Ocean, European and American sides, Mediterranean, etc.
Pavonaria willemoësii (Kölliker) = Microptilum willemoësǐ, Kölliker. As M. willemoësii from south of Yeddo (Challenger).
Among the new facts of distribution, perhaps the following are of most interest :
Stachyodes allmani, Wright and Studer. From the Laccadive Sea (Investigator); previously from the recfs, Fiji.
Callistephanus koreni, Wright and Sturler. From the Andaman Sea (Investigator); previonsly from off Ascension.
Juncella elongata, Pallas. From the Bay of Bengal (Investigator) ; previonsly from Atlantic, West Indies, N.E. coast of Australia, and Algoa Bay.
Distichoptilum gracile, Verrill. From Investigator Station 231, $7^{\circ} 34^{\prime} 30^{\prime \prime}$ N., $76^{\circ} 08^{\prime} 23^{\prime \prime}$ E., and $321,5^{\circ} 4^{\prime} 8 \frac{1}{2} \mathrm{~N} ., 80^{\circ} 22^{\prime}$ E. ; previously from North Atlantic, S. W. of Nantucket Island, etc.
Umbelluta durissima, Kölliker. From Laccadives (Investigator); previonsly from S. of Yeddo and Antarctic.

Anthoptilum murrayi, Kölliker. From Investigator Station 104, $11^{\circ} 12^{\prime} 47^{\prime \prime}$ N., $74^{\circ} 25^{\prime} 30^{\prime \prime}$ E. : previonsly from N. Atlantie, Bay of Gascony, S. of leelaud.
Funiculina ${ }^{1}$ quadiangularis (Pallas) = Leptoptilum gracile, Kölliker: From Bay of Bengal (" Investigator"), as Leptoptilum gracile, and previously from New Zealaud. F. quadiangularis, previously from North Sea, Atlantic, Mediterranean, ete.
Pavonaria ${ }^{1}$ willemoësii (Kölliker) $=$ Mieroptilum willemoësii, Kölliker. From Andaman Sca; previously as M. willemoësii from Japan.
The wide distribution of some decp-sea types is thus well illustrated.

Some Matters of Detail.

It may be convenient to direct attention here to some matters of detail that arc of general interest.

The siliceous axis which forms the support of Sarcophytum aberans, n. sp., is 300 mm . in length by $2-3 \mathrm{~mm}$. in by adth, and is probably the huge spicule of Monorhaphis or some allied sponge. (See Plate I. fig. 2c.)

Analogous, on a smaller scale, is the siliceons sponge-spicule, which serves as a support for Sympodium inerustans, n. sp. (See Plate 11. fig. 7.)

[^1]
xii

The spicules of Chimonephthya mocrospiculata, n. sp., are of unnsually large dimensions, some attaining a length of $8: 3 \mathrm{~mm}$. (See Plate IV^{\top}. fig. 10.)

In Spongorles uliginosa, n. sp., there we almost equally huge spieules, some 8 mm . in length.

Noteworthy is the great heterogeneity of the spicules in some of the forms, e.g. plates, dises, triangles, rods, spindles, and "golf-clubs" in Acconthomuricea spicata, 11. sp., and similarly in A. ramosa, n. sp.

Besides the very peculiar habit,-incrusting a huge siliceous rod,-there are many interesting features in Sarcophytum aberans, n. sp. : the occurrence of several sizes of autozooids, the intuming of almost the whole of a large tentacle into the stomodreum, the presence of ora and embryos in the siphonozooid canals.

In Sarcophytum agaricoides also there are ova in the siphonozooid cavities.
The dimorphism which Gray recorded in his Paragorgia nodosa is confirmed in P. splendens, n. sp. It is mique in Pseudaxonia.

In Distichoptilum gracile, Terill, we have observed that there may be two ($)$ ' three siphonozooids in close comection with the antozooids.

The complex differentiation of the polyps in Agaricordes alcocki, Simpson, is quite unique.

Very remarkable tentacles occur in Thesioides inermis, n. g. et sp. (See Plate VI. figs. 1 and 2.) Those of Protocaulon indicum, 11. sp., are also unusual (See Plate VII. fig. 3.)

The base of Anthoptilum decipiens, n. sp., is very characteristic in its shape, nud it may be further noted that there is no evidence of an area of attachment.

In Pteroüdes bivadiata the small number (3) of supporting rays is noteworthy. It is possible that the specimen, which is only 107 mm . in length, is still young ; and attention may be directed to the range of variation in the number of rays in P. griseum.

In regard to a collection which is a very feast of colour, we may call special attention to the exquisite colour sehemes of Pennatula venevis, P. pendula, and P. splendens, and also to the very rich crimson-lake tint of the rachis and pinnules in P. indica.

The presence of numerous Foraminifera in the stomodrum of Agaricoides alcocki is a fact of interest.

Some of the epizoic mimals are interesting, c.g. the peculiar Solenogaster (Rhopulomenia gorgonophila?) on Acamptogorgia circium, n. sp.; Palythoa and sponge on Parisis indica, n. sp. Between the regetable axis and the stolons of Sympodium indicum, n. sp., Polycheet worms have formed burrows, and some tube-forming Pulychets are attached to the surface.

LIST OF SPECIES.

Order I. STOLONifERA, Hickson.
Family Cornularidide Page
1
Sympodium indicum, n. sp. 1
decipiens, n. sp. 2
, incrustans, n. sp. 2
". granulosum, n. sp. 3
" tenue, n. sp. 3
,, pulchrum, n. sp. 4
Order II. ALCYONACEA, Verrill (pro parte).
Family Aloyonid.d 5
Sarcophytum aberrans, n. sp. 5
" agaricoides, n. sp. 7
Family $\mathrm{N}_{\text {ephthyide }}$ 9
Subfamily Spongolinie 9
Spongodes uliginosa, 11. sp. 9
" alcocki, n. sp. 10
Lithophytum indicum, n. sp. 11
Subfamily Siphonogorginæ 11
Chironephthya variabilis, Hicksun 11
" macrospiculata, n. sp. 12
Stereacanthia indice, n. g. et sp. 13
Agaricoites alcocki, Simpson, n. g. et sp. 15
Order III. PSEUDiXONIA, G. von Koch.
Family Briareid.t 20
Subfamily Briareina 20
Paragorgia splendens, n. sp. 20
Family Sclerogorgide 21
Suberogorgia küllikeri, Wright and Studer, var. ceylonensis, Thomson 21
Keroëules koreni, Wright and Studer 22
., gracilis, Whitelegge 22
page
Family Melitodid.e: 23
Parisis intica, n. sp. 23
Fimily Corallidat 24
Pleurocorallium "ariabite, n. sp. 24
Order IV. AAIFERA, G. von Koch.
Family Dastgorglinat 26
Lepidogorgiu rerrilli, Wright and Studer 26
Chrysogorgin orientalis, Versluys 28
flexilis, Wright and Situder 28
dichotoma, n. sp. 29
irregularis, n. sp. 30
indica, n. sp. 31
Tamily ISID.E 31
Subfamily Ceratoisidine 31
Ceratoisis gracilis, n. sp. 31

- Leunella rigidu, Wright and Studer 32
robusta, 11. sp. 33
Family Promanomed 35
Subfamily Primnoinæ 35
Stachyoules allmani (Wright and Studer) = Calypterimus allmani, Wright and Studer 35)
Stenella liorritla, n. sp. 36
Thouarella moseleyi, Wright and Studer, var. spicata, nov. 42
ctaligor!itu flabellum, Ehrenberg 43
indica, n. sp. 43
,, dubia, 11, sp. 45
Family Muriceid_e 46
Arcunthogorgia ctspera, Pourtales ($=$ A. spinosa, Hiles ?) 47
Paramuricea indica, n. sp. 60
Acantloomuricea ramosa, n. g. et sp. 61
spicata, n. sp. 63
Anthogorgia verrilli, n. sp. 64
Calicogorgia investigatoris, 11. g. et sp. 65
ruthotincta, n . sp. 66
Placogorgik imlica, n. sp. 67
", orientalis, n. sp. 68
Astroyorgia rubru, n. sp. 69
Acamptogoryia bebryenites, von Koch 70
71
circium, n. sp. 76
Acis spinosa, n. sp. 77
Mmicella benyalensis, n. sp. 78
PAGE
PAGE
Family Gorfonine 79
Callisteplanus lioreni, Wright and Studer 79
Family Gorgonellithe 79
Nicella flabelluta (= Vervucella flabellata, Whitelegge) 80
Juncella elongata, Pallas 81
," miniacea, n. sp. 81
Sciplearella moniliforme, Wright and Studer 82
" alba, n. sp. 82

Order V. STELECHOTOKEA, Bourne.

Section Asiphonacea.

Family Telestid.z 84
Telesto arthuri, Hickson and Hiles 84
„, rubra, Hickson 85
Section PENNATULACEA.
Family Protocaulin.e. 85
Protocaulon indicum, n. sp. 85
Family Protoptilid.e 86
Protoptilum medium, n. sp. 86
Distichoptilum gracile, Verrill 87
Family hophobelemnonid.z 88
Kophobelemnon lurgeri, Herklots, var. indica, n. 88
Sclerobelemnon küllikeri, n. sp. 89
Bathyptilum indicum, n. sp 90
Thesioides inermis, n. g. et sp. 91
Family Unbelaulid.e 92
Umbellula durissima, Kölliker 92
,, dura, n. sp. 93
," intermedia, n. sp. 94
" rosea, n. sp. 95
" murpurea, n. sp. 95
elongata, n. sp. 96
" lüllilieri, n. sp. 97
.. radiata, n. sp. 98
,, vendula, n. sp. 99
, indica, n. sp. 99
" sp 100
Family Anthoptilide 108
Anthoptitum murrayi, Kölliker 108
" decipiens, n. s]. 104
Family FuviculinidesAG8
Subfamily Funiculininæ 110
Fumiculinu quatrangularis (Pallas) = Leptoptilum gracile, Kïlliker 110
," gracilis, 11. sp. 111
Subfamily Staclıyptiliclæ 112
Stachyptilum maculatum, n. sp. 112
Family Jinatlanide (Puronaridu, Jungersen) 112
Paronaria villemö̈sii (Külliker) $=$ Microptilum villemoösii, Kölliker 112
Family Pernatulidak 113
Subfamily Pennatulinæ 113
Pennatula indica, n. sp. 113
" reneris, n. sp. 115
," splendens, 11. sp. 116
," pendula, n. sp. 118
Subfamily Pteroëididæ 118
Pteroëtles triradiata, n. sp. 118

DESCRIPTION OF SPECTES.

Order I. STOLONIFERA, Hicksou.
 Family Cornelatrid.f.

This family is representer in the collection by six species of Sympodium, all of which seem to be new :

Sympodium indicum, 11. sp.
" decipiens, n. sp.
,, incrustans, 11. sp.
" granulosum, n. sp.
,, teпие, 11. sp.
", Mulchrum, n. sp.

Sympodium indicum, n. sp. Plate II. fig. 6 ; Plate IX. fig. 18.
This species is represented by oue greyish-white specimen which forms a complete tube round the broken fragment of a hollow vegetable axis.

The surface presents a granular appearance, and is thickly covered with large polyps which arise singly, and do not appear to be arranged in any particular manuer.

The polyps consist of a retractile anthocodia and of a nou-retractile calyx, the latter marked by eight longitudinal ridges which end slightly below the top. The tentacles have on their aboral surface a spiculated band which projects downwards for a short distance from their base. The calyces are $2-3.5 \mathrm{~mm}$. in length; the whole polyp is about 7 mm . in length; but this does not represent the maximum, as no polyp is fully expauded. Ova are present in abundance at the base of the polyps.

The spicules are of two types, (1) prominently rough warty spindles, either straight or curved ; and (2) quadriradiate forms, few in number and marked by an X -shaped marking at the origin of the rays. The following measurements were taken of length by beadth in millimetres:

$$
\begin{aligned}
& \text { 1. } 0.5 \times 0.08 ; 0.4 \times 0.065 ; 0.25 \times 0.04 \\
& \text { 2. } 0.3 \times 0.2 ; 0.3 \times 0.13 ; 0.2 \times 0.15
\end{aligned}
$$

Between the vegetable axis and the stolon, polychete worms have formed burrows, and some tube-forming worms are attached to the surface.

Locality: Andamans; 265 fathoms.

Sympodium decipiens, n. sp. Plate M. fig. 8.
This species is represented hy a large greyish-white specimen crecping over aud encircling a vegetalle axis.

The polyps are large, occurring either singly or in groups of tro or three on a membanons stolon. They consist of a retractile and a non-retractile portion, the latter with a maximum length of 7 mm .

The whole surface of the stolon and of the polyps is closely covered by large spicules which are visible to the naked eye.

The spicules are long curved spindles or rods often abruptly truncated at one end and covered with numerous rough wart-like projections. There are two types:

1. Rather thick rods, curved or straight, often bhatly rounded at one end and tapering to the other, thas tending towards a chub-like form, thickly covered with rough warts and varying in length from $03-1 \cdots \mathrm{~mm}$., and in breadth from $0.09-0.2 \mathrm{~mm}$.
\therefore Longer and more slender rods or spindles with fewer and simpler projections, varying in length from $0.25-0.8 \mathrm{nmm}$., and in breadth from $0.06-0.1 \mathrm{~mm}$.

In both cases there is often a slight lifurcation of the ends of the spicule. This species closely resembles Sympodium indicum, but differs from it (1) in the larger size of the spicules, and (2) in the arrangement of the polyps.

Locality : Audamans; 271 fithoms.

Sympodium incrustans, n. sp. Plate II. fig. 7.

This species is represented by two greyich-white fragments which cover a siliceous sponge spicule.

The stolon is a thin membrane spreating over and completely suromiling the spicule. It is gramlar in appearance and hears few polyps, which occur irregularly at wide intervals. The ealyces are marked ly eight longitulinal ridges which extend up their whole length, and thous produce a crenate appearance at the margin of the eup. On the ridges the spicules are arranged with their long axes parallel, or slightly inclined, to the leugth of the ridge. The calyces are from $1-3.9 \mathrm{~mm}$. in length and from $1-2 \mathrm{~mm}$. in basil diameter.

The non-retractile portion is also closely covered with spicules which are not arranged in any particular orler. Just below the tentades they form more or less regular bands which extend up the aboral surface of each tentacle, on which the spieules are at first armgen in eherron, but are soon disposel with their long axes parallel to the length of the tentacle.

The spienles are spindles, either straight or curved, covered ly thick prominent
warts. The following measurements were taken of length and lweadth in millimetres:

$$
0.19 \times 0.05 ; 0.23 \times 0.05 ; 0.25 \times 0.06 ; 0.35 \times 0.04
$$

Locality: Andamans; $238-290$ fathoms.

Sympodium granulosum, 1. sp.

This species is represented by a single colony, with a thin membranous stolon, granular in appearance and completely surrounding an antipatharian axis.

The polyps are grouped in bundles of from 2-9 at irregular intervals, eaeh bundle having a rough irregular ball-shaped appearance. The calyces are low and squat, rising very little above the level of the general crenenchyma, and are covered by a rough coating of spicules.

The anthoeodiæ are eapalle of complete retraction. The tentacles are short, and have a band of spicules on the aldoral surface, consisting of two rows diverging from the middle lise. The general anthocodial spieules are arranged en chevron. The spicules are spindles or rods, a few flat ovals, and a few quadriraliate forms. The spindles and rods may be straight or curved, and all have rough warty protuberances. The spieular measurements, length by breadth in millimetres, are as follows:

1. Spindles, $0.8 \times 0.09 ; 0.5 \times 0.08 ; 0.15 \times 0.04 ; 0.08 \times 0.03$.

2 . Rods, $0.4 \times 0.07 ; 0.35 \times 0.09 ; 0.3 \times 0.1$.
3. Oval forms, $0.5 \times 0.22 ; 0.37 \times 0.2 ; 0.3 \times 0.2$.
4. Quadriradiate and X -marked forms, $0.8 \times 0.25 ; 0.3 \times 0.2 ; 0.14 \times 0.07$.

Locality : Station $173 ; 8^{\circ} 35^{\prime} 45^{\prime \prime}$ N., $81^{\circ} 17^{\prime} 45^{\prime \prime}$ E. ; 609 fathoms.

Sympodium tenue, n. sp. Plate IV. fig. 6.
To this species are referred two small colonies or fragments whieh spread over and enelose a number of siliceous sponge spicules.

The stolon is thin and membranous, granular in appearanee, and completely surrounds several of the sponge spicules.

The polyps are scattered over the surface, occurring singly, or in twos or threes in close proximity. They consist of a non-retraetile calyx and of a retractile portion, the anthocodia. When the anthocodie are completely retracted, the mouth of the calyx shows a number of buut loles or teeth.

The tentaeles are of medium length, and have a band of spieules ruuning up the aboral surface.

The ealyees are from $1.5-3.9 \mathrm{~mm}$. in length, and are marked by eight ridges running longitudinally, which are only faiutly visille in the more contracted polyps.

The spienles of the calyx are armed with the long ases parallel to the length of the polyp. On the authocorlie the spicules are arranged in a band consisting of eight inverted Vs, the points of which lie at the bases of the tentaeles and project
for a short distance up the aboral surface. Higher up the spicules assume a position parallel to the length of the tentacle.

The spieules are spindles, cither straight or eurved, with rough warty protuberances, and a very few quadrimuliate forms. The following measurements were taken of length and brealth in millimetres:

Spindles, $0.1 \times 0.05 ; 0.25 \times 0.05 ; 0.5 \times 0.07 ; 0.6 \times 0.08 ; 0.65 \times 0.05$.
Quadritadiate forms, $0 \cdot 14$ from tip to tip one way.
Locality : "Station $222 ; 13^{\circ} 27^{\prime}$ N., $93^{\circ} 14^{\prime} 30^{\prime \prime}$ E. ; 405 fathoms.

Sympodium pulchrum, n. sp. Plate VI. fig. 7.
This species is represented by a large colony spreading over the surface of a sponge skeleton.

The stolon is thin and ribbon-like in parts, but it also spreads ont into flat expansions, with a stringy appearance on the surface.

The polyps oceur all over the surface, arising singly or in twos and threes in close proximity at the cuds of the branches of the sponge on which they spread.

The calyces are usmally marked by eight longitudinal ridges, which are more distinct in the larger polyps. The spicules on the calyces are armanged with the long axes parallel to the length of the calyx, and form a complete compact covering. The calyces vary in length from $1.2-7 \mathrm{~mm}$, and in basal diameter from $1 \cdot 1-2 \cdot 5 \mathrm{~mm}$.

The anthocodie are capable of complete retraction, and are all more or less retracted, but several even in this condition measure slightly over 3 mm ., thns giving the larger polyps a total height of over a centimetre. The spicules, which form a dense covering, are arranged distally in a transverse band, from which points project at the bases of the tentacles. On the tentacles the spieules are at first arranged en chevron, but soon run parallel to the long axis. The band continues up the aboral surface of the tentacle and gives off obliquely transverse spieules to the sides.

The spicules are spindles, straight or curvel, with rough warty protuberances. The following measurements were taken of length and breadth in millimetres:

$$
0.8 \times 0.075 ; 0.5 \times 0.04 ; 0.15 \times 0.04
$$

Locality: Station $284 ; 7^{\bullet} 55^{\prime} \mathrm{N} ., 81^{\circ} 47^{\prime} \mathrm{E} . ; 506$ fathoms.

Order II. Alcyonacea.

Family Alcyonides.
This family is represented by two new species of Sarcophytum:
Sarcophytum aberrans, n. sp.
" agaricoides, ц. sp.

Sarcophytum aberrans, i. sp. Plate I. figs. 1, 2a, 2b, and 2c ; Plate IX. figs. 7 and 11.
This species is based on two specimens which are very different from one another in habit and general appearance. The first-which diverges less than the other from the typical agariciform shape-is a coral red colony, attached by means of a thin membranous base to a piece of coral.

The stalk is 18 mm . in length, and is very much flattened owing to the collapse of the thin walls between the canals. The capitulum is small and slightly mushroom-shaped; autozooids are more numerous and smaller at the margin.

The autozooids are apparently incapable of complete retraction. Each is covered by a thick coating of spicules. The tentacles are long (from $4-5 \mathrm{~mm}$.) and laterally compressed, with the pinnules on either side of the middle line of the oral surface, thus leaving a broad free space on the aboral surface. Several of the autozooids reach a length of 18 mm ., but on the margin many are only $3 \cdot 5-4 \mathrm{~mm}$. in length.

Between the autozooids the surface of the capitulum is closely covered by small raised points which mark the positions of the siphonozooids.

In the autozooids the spicules are (1) long rods and spindles with a few very small spines, (2) small club-like spicules with a number of prominent spines at one end and the other end tapering to a point, and (3) small double clubs. The following measurements were taken of length and breadth in millimetres :-

1. $0.25 \times 0.02 ; 0.3 \times 0.02 ; 0.5 \times 0.02$.
2. $0.12 \times 0.02 ; 0.12 \times 0.04 ; 0.14 \times 0.04$.
3. $0.06 \times 0.05 ; 0.07 \times 0.04$.

The heads of the second group of spicules lie close together and the projecting spines interlock, thus forming a matted felt-work.

Locality : Statiou 232 ; $7^{\circ} 17^{\prime} 30^{\prime \prime}$ N., $76^{\circ} 54^{\prime} 30^{\prime \prime}$ E. ; 430 fathoms.
The second, and at first very puzzling specimen, is a beautiful colony of a
reddish colour, surrounding a siliceous rod, which is from $2-3 \mathrm{~mm}$. in hrealth and 300 mm . in length. The average lrealth of the colony, polyps includer, is 22 mm ., of the crenenchyma, apart from the polyps, 8-12 mm. At the lasal end of the colony the rod is left bare for 50 mm . There can be little doult that this rod, which serves as an extrinsic support to the colony, is an immense sponge spicule, such as has been described in Monorhaphis.

The colony consists of abont 75 large slightly-retractile autozonids, $10-12 \mathrm{~mm}$. in height, abont 4 mm . in diameter, and with tentacles 3-5 mm. in length. These autozooids arise from the finely granular cenenchyma, apparently without regular arrangement, at intervals of $2-6 \mathrm{~mm}$., and on all sides. The spaces between them are covered with very numerons siphonozooids.

Extenting in a spiral up the siliceons rod there is a broad ($2 \cdot 5-4 \mathrm{~mm}$.) band of thin crenenclyma, which bears neither antozooids nor siphonozooids. It six places the opposite margins of thick polyp-bearing eenenchyma arch over the thin conenclyma and come into contact; at two other places the thick ccenenchyma completely surromeds the rod. It may be suggested that the loroid bare band corresponds to the stalk.

Along each margin of the thick cenenchyma as it abuts on the bare tract, there is a row of minute autozooids (about 1 mm . in diameter) with brownish tentacles, and hetween these and the typical antozooids there are many intermediate sizes. The minute marginal autozooids are separated by intervals, varying from $1-2 \cdot 5 \mathrm{~mm}$.

The surface of the crenenchyma appears to be covered by minute spiculater warts, which mark the apertures of the siphonozooids. Between the conenchyma and the siliceons rod there is a thin film of faintly yellowish debris.

The autozooids have a much wrinkled surface, due to contraction. The tentacles are simply infolded, and bear $12-15$ plump, conical pimules. The tentacles have large cavities flattened in the radial plane, their aboral surface (in the preservel state, at least) is a narrow ridge learing longitudimal rows of spicules. In one case a tentacle was seen to be completely intumed into the stomodrom. The wall of the stomodæmm is sulstantial, and transversely anmulated, recalling a similar appearance in Sarcophytum agaricoides. It is continued inwards below the surface of the conenchyma, almost as far as the siliceous rot.

A slice parallel to the surface of the cenenchyma exposes the crowded cavities of the siphonozooids, nsually alout $0.75-1 \mathrm{~mm}$. in diameter, and are at once seen to be crowded with ova (0.3 mm . in diameter) amd l,astula embryms (0.5 mm . in diameter). In some cases gastrulation had occurred.

A section in the plane of the longitudinal axis of the minute marginal antozooids at one of those regions where the opposite margins of thick cenenchyma
overlap the bare band, shows elongated cavities leading from the polyp openings into the conencliyma proper. It may also be seen that minute canals cross the band of thin chenenchyma from side to side.

The spicules agree elosely with those of the other specimen. The following measurements were taken of length and breadtli in millimetres:
(ri) Cenenchyma: (1) Long spindles, with few blunt spines, 0.5×0.04; $0.4 \times 0.03 ; 0.3 \times 0.03$.
(2) Shorter warty spindles, $0.25 \times 0.03 ; 0.2 \times 0.02$.
(3) Rods with warty ends and warts in two whorls, $0.14 \times 0.06 ; 0.12 \times 0.06$.
Some of these approach double cluts, while others are almost stellate.
(4) I ferr crosses also occur, $0.2 \times 0.2 ; 0.2 \times 0.1$.
(b) Autozooids: (1) Long spiudles, as in erenenchyma, but with fewer spines, $0.55 \times 0.03 ; 0.45 \times 0.03$.
(2) Cluls with bare shaft and warty end, 0.15 in length, shaft 0.02 broad, end 0.03 broad; $0.1 \times 0.015 \times 0.02$.
(3) Short warty rods, as in cenenchyma, 0.1×0.08; 0.1×0.06.
(t) 1 few crosses, 0.2×0.1.

Locality : Station $25 t^{\prime} ; 11^{\circ} 16^{\prime} 30^{\prime \prime}$ N., $92^{\circ} 58^{\prime} \mathrm{E} . ; 669$ fathoms.

Sarcophytum agaricoides, n. sp. ${ }^{1}$ Plate I. fig. 3.
The general appearance of the colony may be described as mushroom-shaped. A distinct cylindrical stalk expands into a large hemispherical lobe or pileus. The colour is a uniform purplish-red except on the retractile portions of the autozooids, which are yellowish-white. The pilcus is approximately circular in outline, markedly convex on its upper surface and slightly concave on its lower. The total height of the colony is 5.5 cms . The pilens has a maximum breadth of 3.2 cms. and a length of 1.2 cm .

The lower surface of the pilens is covered with an epidermis, continuous with that of the stalk, and totally devoid of polyps. The upper surface bears numerous retractile autozooids, uniformly distribnted over the surface. In the inter-spaces a great number of small whitish spots mark the positions of the siphonozooids. The stalk is cylindrical, and has a maximum leugth of $3: 3 \mathrm{cms}$.

A longitudinal section through the colony shows a series of tubular canals, runuing from the apertures of the autozooids, bounded by aboudant counective
${ }^{1}$ This beautiful sprecies was described by one of my studentr, Mr. James Hector, as an exercise for the B.Sc. degree.-J. A. T.
tissue supported by numerons elongated rod-like spienles. These camals gradually converge towards the centre of the pilens, finally forming a series of straight parallel canals ruming down the stałk.

The spicules are very uniform throughout, the main differences being in the relative size.

The nomal type is rod-like, ustally straight, occasionally slightly bent, tapering to a point at both ends. The surface is smooth, or covered with slight projections most numerous towards the ends. Besides these, there are much smaller, very irregular spieutes. In the outer tissue of the pilens there are long spicules with a few of the irregular type; in the deeper tissue of the pileus they are similar but slightly larger. In the stalk the simple and the irregnlar forms are almost equally well represented. In the tentacles the spicules are smaller and very nlmmerous. A third type is also found, intermediate between the others already referred to, namely a short cylinder, truncated at one end and presenting a knobled appearance at the other.

The autozooids are circular in outline, and may be almost completely retracted within their respective cavities, the edges of which are distinctly tumid. The apertures are about 3.5 mm . across; the diameters of the canals deerease as they pass inwards.

At the apex there are eight tentaeles of the usual type bordering the mouth aperture. The anthocodial part consists of a yellowish tube with the surface much wrinkled. Its onter wall is contimnous with the epithelium of the surface of the pileus, and at the level of the pilens forms a semi-transparent flexible membrane closing the entrance.

The stomodæum is continued about 10 mm . below the surface of the pilens, and is attached to the wall by the mesenteries, which hear gastric filaments, but show no trace of gonads. The stomodaal wall is very sulistantial, and supported hy reddish spicules; it shows very conspicnous and regular transverse corruga-tions- 27 in mumber; the siphonoglyph is broad and deep; the inferior opening of the stomodrum into the celenteron resembles a flattened papilla.

The apertures of the siphonozooid cavities are very minute, and are seen on the surface of the pileus as a large numher of white spots. Each spot is a delicate membrane roofing the cavity of the polyp, and perforated by an elongated slit, the mouth of the zooid. Tentacles are unrepresented. The mouth leads into a small chamber separated from the wall of the cavity hy a narrow space crossed by mesenteries.

The siphonozooid cavities pass gradually into the antozooid cavities; a number seem to be continned into the stalk as distinct chanmels. Others seem to end 1)lindly. Numerous ova oecur on the walls of the siphonozooid cavities a very short distance down the tube.

Locality : Station 204; $6^{\circ} 50^{\prime} 20^{\prime \prime} \mathrm{N} ., 79^{\circ} 36^{\prime} 20^{\prime \prime} \mathrm{E} . ; 180-217$ fathoms.

Family Nephturines.

This family is represented by the following forms:
Sulffimily Spongodinie:
Spongodes utiginosa, n. sp.
" alcocki, n. sp.
Lithoplytum indicum, n. sp.
Subfamily Siphonogorgine:
Chironeqhethya variubilis, Hickson.
" macrospiculata, n. sp.
Stereacanthici indica, n.g. et sp.
Agaricoides alcocki, Simpson, n. g. et sp.

Subfamily Spongodina.

Spongodes uliginosa, 1. sp.
This species belongs to the section Divaricate and to the Suensomi group as defined l,y Küikenthal.

The colony is small, 21 mm . in maximum height and 28 mm . in wilth. It resembles a thorny bush, and is greyish-white in colour. The trunk is short, and the first branches arise at a height of 10 mm . from the base. The lowest branches are flat and reflexed, forming a complete collar ronnd the upper part of the trunk.

The polyps arise singly on short twigs. The twig is composed of large spicules which are placed longitudinally and project beyond the polyp brase, thas giving rise to the thorny appearance. The polyp heads are borne on short peduncles, and the two together reach a height of 3 mm . On the authocodia the spicules are arranged in a crown and points; in the crown there are two to three transverse lows, and in each point there are two prominent converging spicules. These separate a little at their free ents and form a circle of projecting spines round the retracted tentacles. On the ahoral surface of the tentacles there are bands of spicules arranged longitulinally. The spienles of the general crenenchyma are spindles either straight or twisted, and covered with numerons warty projections. Their measurements, length by breadth in millimetres, are as follows:

$$
8 \times 0.5 ; 7 \times 0.5 ; 5.5 \times 0.35 ; 2 \times 0.3 ; 0.6 \times 0.05 .
$$

Some of the spindles are bifid at one end, or give off a short projection from one of the lateral surfaces.

The polyp spicules are warty spindles and irregular ronts. They may be straight, curved, or sharply lent at one end. The following measurements were taken of length and hreadth in millimetres:
$1.6 \times 0.1 ; 1.5 \times 0.1 ; 0.3 \times 0.045 ; 0.3 \times 0.02 ; 0.16 \times 0.025 ; 0.1 \times 0.03 ; 0.07 \times 0.02$.
This species comes very near spomyorles suensoni, Ilom, lut differs from it 2
in the arrangement of the polyps and in the large dimensions of the spicules. The colour of the colony is also quite different, leing in this case greyish-white, while Sponyodes suensomi is greyish-yellow with yellow or red polyps and red "'stutzlundel" and polyp spicules.

Locality : Station 237 ; $13^{\prime} 17^{\prime} \mathrm{N} ., 93^{\circ} 07^{\prime} \mathrm{E}$; 90 fathoms.

Spongodes alcocki, n. sp. Plate I. fig. 4; Plate VIll. fig. 6.
This is a divaricate form, and helongs to the Cervicomis group of Kuikenthal.
The base of the trink forms a flattened dise of attachment. About 12 mm . from the base the trmen is surromeled ly an irregular, Hattened branch, which is interrupted altogether at one place and is twice perforated. At the perforation next the interruption there is an amost cylindrical portion which may represent a separate secondary branch. Above the collar some small branches are also slightly Hattener.

The branching of the colony is on the whole in one plane, with a median and two lateral main branches, each breaking up into numerons twigs. The height is 60 mm . from above the collar, and the maximum breadth 90 mm . The colony is very delicate and readily tom; the colour is translucent white, except at the tips of the twigs and in the jolyps, where the spicules are deep yellow or orange red.

The polyps occm in bunlles of $5-10$, but the larger numbers are the more frequent. Each polyp stands on in seprate stalk, about $2 \cdot 5 \mathrm{~mm}$. in length. The polyps and their tentacles are white, disgnised at first sight by the orange red spicules.

The spicules of the anthocoria are arranged in 8 triangles, each consisting of a pair of converging spicules and a horizontally-placed curved spicule which forms the base. In addition to these there are some irregularly horizontal spicules. The aloral surface of the tentacle has a band of minute red spicules arranged in two rows.

The spicules of the polyp stalk consist of closely contiguous obliguely transverice rows; on the surface of the stalk fart hest from the polyp several stronger spicules are arranged longitudinally to form a Stiitzhindel, one of which projects for a short distance beyond the polyp.

The spicules of the stem form a loose network, and are spiny spindles straight or curved. The following measurements were taken of length and breadth in millimetres:

```
1%\times0.1; 1. 4 >0.1; 1.3\times0.06; 0.8 < 0.045; 0.75\times0.05; 0.3\times0.0.2;
    ()}=0.0.03
```

The polyp spricules are straght or curved spindles. The following measurements were taken of length and beadth in millimetres:

$$
1.5 \times 0.09 ; 0.9 \times 0.06 ; 0.7 \times 0.04 ; 0.16 \times 0.03 ; 0.12 \times 0.03 ; 0.06 \times 0.03
$$

The colour of the stem and branches is white, the twigs orange red, and the polyp heads appear brick red.

Locality: Bay of Bengal; 88 fathoms.

Lithophytum indicum, 11. sp.

This species is representel by a small fragment, 21 mm . long and 14 mm . broad.

The hasal attachment is absent, and so also is the lower part of the stem, so that the exact shape of the colony is not known. The upper part of the stem divides into three lobes or short lnanches of nearly eqnall size.

The polyps are arranged on the branches at fairly wide intervals, and in a slightly contracted condition are 2 mm . in height and 1 mm . in basal diameter: The tentacles are about 0.6 mm . in length, and have on each side about eight long slender pinmules. There are abundant ova in the lower parts of the polyps. The spicules of the polyp lie transversely at the base, hut just below the tentacles they are arranged in eight longitudinal rows.

The polyp spicules are spindle-shaped, varying in length from $0.15-0.5 \mathrm{~mm}$. and in brealth from $0.02-0.08 \mathrm{~mm}$. They are coverel by sparse fainly strong simple spines. A few are slightly thicker in the middle, and marked by an X-shaped mark near the middle point.

The tentacle spicules are shorter, mostly about 0.1 mm . in length.
The spicules of the stem are blunt spindles or rods covered with sparse simple spines, and a few irregular incipient quadriradiate forms. They vary in length from $0 \because-0.9 \mathrm{~mm}$. and from $0.03-0.06 \mathrm{~mm}$. in brealth. The quadriradiate forms vary in length from $0.2-0.4 \mathrm{~mm}$, aul are all marked loy an X -shapect mark at the origin of the rays; sometimes one of the eross-marks is so faint as to seem to be absent.

This species is probably to be referred to the vicinity of L. africanam; Jut it is distinguished ly its large polyps, large spicules, and the presence of the cuadriradiate forms.

Locality : Station 333 ; $6^{\circ} 31^{\prime}$ N., $79^{\circ} 38^{\prime} 45^{\prime \prime}$ E. ; 401 fathoms.

Subfamily Siphonogorginie.

Chironephthya variabilis, Hichsou.
This species is represented by a large number of fragments, all of which probably belonged to one large colony. They present a rather striking appearance owing to the contrast between the general white or very pale pink colour of the branches and the deep coral red colour of the spicules of the anthororlie.

The spieules of the anthocolize are arranged in two gromp; the crown ant
point spicules, the point spicules being arranged en cherron and not in a fonslemped manner.

The measurments of the spicules are as follows:
l'oint spicules, $0.35 \times 0.02 \overline{5} ; 0.3 \times 0.03 ; 0.3 \times 0.025 ; 0.2 \times 0.02$.
Crown \&picules, $0.6 \times 0.035 ; 0.5 \times 0.028 ; 0.4 \times 0.03 ; 0.3 \times 0.02$.
(11 the aloral surface of the tentacles there are nmerons small spicules arranged in 's. Their average length is 0.08 mm , and their average breadth 0.012.

Locality: Pay of Bengal: 88 fathoms. Previously recorden from the Maldives (Hickson) ; Ceylon (Thomson and Itenterson, 1905).

Chironephthya macrospiculata, 11. sp. Plate IV. fig. 10.
This species is represented lyy a single colony about 5 cms . in height.
From the flat spreating lase two stems arise which are fused together for a short distance. The larger gives off a lateral hanch at a point nearly half-way up. The colony presents a very rongl appeanance owing to the huge spicoles which form a loose covering over the stems and manch. The spaces left between the large spicules are filled by minute spicules which are either colourless or red.

The polyps arise all round the stems and liranch, and are supported by small platform-shaped calyces formed by several spicules placed side by side. In the polyps the spicules are arranged in crown and points. The crown consists of three rows, and in the points the spieules are armanged on chorom. In each point there are two principal spicules slightly inclined to one another, and two smaller spicules in the angle hetween these. Two pains lic in the space between two adjacent pmints. On the aboral surface of each tentacle there is a hand of spicules arranged longitudinally or in V s, with the apices of the V s directed towards the distal cmil of the tentaele. The spicules of this hand are white, except for a narrow transverse portion about half-way ap in which the spicules are a hright red.

The spieules of the connenchyma are warty or spiny spindles, straight or slightly twisted, coloured or colourless. The following measurements were taken of length and hrealth in millimetres:

1. Uncoloured, $8.3 \times 0.9 ; 5.2 \times 0.9 ; 3.9 \times 0.6 ; 14 \times 0.22 ; 0.8 \times 0.12$.
2. Colourel, $0.3 \times 0.04 ; 0.2 \times 0.02 ; 0.15 \times 0.02$.

The polyp spicules are warty spindles, either straight, curved, or sharly hent at one end. They are coloulless, with the exception of those composing the red transverse hand on the tentales. The following measurements were taken of length and hrealth in millimetres:

$$
0.8 \times 0.1 ; 0.8 \times 0.08 ; 0.6 \times 0.1 ; 0 . .2 \times 0.03
$$

The colour of the colony is yellowish-hown.

This species is easily distinguished from previously described forms by the immense size of the spicules in the ecenenchyma.

Whitelegge described Siphonogorgia macrospina from Funafuti with spicules sometimes 6 mm . in lengtl, and Miss Hiles has deseribed an apparently similar form in which the largest spicules were $44 \times 0.37 \mathrm{~mm}$. (MS. kindly lent ly l'rofessor Hickson). Through Professor Hickson's courtesy we have been able to examine this specimen, and we find that it is very different from ours.

Locality : Station $246 ; 11^{\circ} 14^{\prime} 30^{\prime \prime}$ N., $74^{\circ} 57^{\prime} 15^{\prime \prime}$ E. ; 68-148 fathoms.

Stereacanthia indica, n. g. et sp. Plate V. fig. 2; Plate IX. fig. 19.
This new genus is represented hy two broken specimens, of which the more complete, when pieced together, is albout 11 cms . in height.

The colony consists of two parts : (1) a long bare trunk, and (2) the braneleed polyp-bearing portion. The trumk has a thickenel hasal portion in whieh there are many projecting spicules. It is thin-walled, and consists of a number of longitudinal canals with the adjacent walls fused and containing numerous large spicules which help to give rigidity to the stalk. The polyp-hearing portion consists of two or three branches irregular in shape and of various lengths, with the polyps closely disposed. The general colour of the polyparium is a light brown, while the long trunk is white, slightly brownish at the lase.

The trumk is composed of about 20 canals with thin walls fused together and filled with spicules. Owing to the contraction of the preserved specimens and the thimness of the partition walls the stalk or trunk is greatly shrivelled and somewhat broken, and thens the mode of growth is not at all clear; but it seems that the polyp eavities are continued down and come into comection with the eanals in the branches, which are either new interstitial growth.s or prolongations of the canals of the trunk.

The trunk is divided into two irregular branches, which again divide into a number of smaller branchlets or lobes, thus giving the polyp-hearing part the appearance of a rugged irregular bush. The hranches are unequal in size, and in one specimen the thicker of the two main branches divides almost at its origin into two principal parts.

The polyps oceur botly on the primary branches and on the secondary branchlets or lobes. On the main branches they are scarce aud arise singly, scattered over the whole surface, but usually leaving a bare strip on the nuter surface of the branch. On the hranchlets they are numernus and crowded.

The polyps are arranged either singly or in small groups of ahout seven, and are borne on stalks about 2 mm . in length, the basal portions of which may he in elose contact. They stand at an angle to the stalks. On the polyp stalks the spicules are arranged obliquely transverse, exeept that on the dorsal side several
slightly stronger spicules are arranged more regularly in a longitudinal direction, but they are not sulficiently markel to warrant their Jeing classed as Stitzbiundel spicules. On the anthocorlial cmp the spicules are arranged in cight irregular triangles rising from a ring of transwerse spicules, and thus recalling the arangement of the spicules in the anthoorliae of Chiromphllyge. On the ahoral surface of each tentacle there is a hand of longitudinally phacel spicules, and these bames, When the tentacles are folded in, form a low eight-rayed rudimentary opereulum.

The spieales of the outer wall of the stalk are large spindles. In the lower part near the base they lie irregnlarly and somewhat transversely, white in the upper part they hecome more regular and are placed longitudinally.

The spicnles of the outer wall of the stalk are straight or curved spindles, thickly covered with very rough prominent warts. The measurements of length and headth in millimetres are:

$$
34 \times 035 ; 2 \times 0 \div 2 ; 19 \times 0 \because 2 ; 1 \times 0.15 \text {. }
$$

The spicnles of the canal walls in the lower part of the stalk are very large spindles, thickly covered with very rough warts, and either straght, curver, or twisted. The measmements of length and breadth in millimetres are:

$$
7 \times 0.7 ; 7 \times 0.6 ; 0.5 \times 0.8 ; 33 \times 0.5 ; 3 \times 0.6 ; 0.7 \times 0.2 ; 0.4 \times 0.1
$$

The spicules of the polyps and polyp stalks are warty spindles either straight or eurved, or somewhat "golf-eluh" shaped ; the warts are prominent and rough. The smaller spicales are freer from projections, hat some have almost serrate eilges. 'Their measurements are :-
$1.8 \times 0.175 ; 1.5 \times 0.2 ; 1.2 \times 0.15 ; 1 \times 0.15 ; 0.4 \times 0.03 ; 0.12 \times 0.02 ; 0.1 \times 0.02$.
Systematic Position. - The infolding of the tentarles when at rest, the presence of the large canals in the main stem and branches, the thick external layer of the main stem, show that this form belongs to the Nephthyide. Adopting Kiakenthal's revised classification of this family, the specimen must be placed, owing to the absence of Stiitzbiundel spicules, in his first division. In this division he included, A, those with the "eamal walls not thickly filled with spicules," and B, those with the "canal walls thickly filled with spicules." As there are abmudant picules in the eanal walls of our specimen, it must he placed in the B group and in the second section of this group, which is characterised by the polyps occuring singly or in bundles. In this section there are two genera, listinguished loy the absence or presence of an irregular internal axis built up of spieules closely packed together. As the present specimen has no trace of an internal axis, it must be phaced near the genus Lemnalia. From this it differs in several respects, e.!. in having no "fuadrimentiate donble-stars" in the wall of the trunk or stalk. It seems necessary to reler it to a new genus, Streercenthin, which may he thus definel:

Coblony upright, consisting of two parts: (1) a bare densely spiculose trouk composel of large thin-wallel longitndinal canals, with fused walls but with no
trace of an irregular central axis; and (2) a branched polyp-hearing portion or polyparium, on which the polyps are arranged singly, or in small bundles crowded together on small branchlets. The tentacles during rest are not retracted, but simply infolded, the aboral lands of tentacular spicules thits forming a pseudooperculum. The spicules are covered by rough prominent warts, and are mostly straight or curved spindles. A number of polyp spicules are "golf-club" shaped, i.e. are bent at a sharp angle near one end.

Locality: Eight miles west of Interriew Islands, Andamans; 270-45 fathoms.

In another hanl from near the Andamans a joung colony of this species is included. It rises from a flat base and consists of two stems - -3.2 cms , and 3 cms. respectively in height. In this speeimen the main stems do not hreak up into branches, but give off small twigs. They are slightly Hattened, and polyps oecur singly over their whole surface.

Loeality : Audamans; 270-45 fathoms.

Agaricoides alcocki, ${ }^{1}$ Simpson, n. g. et sp. Plate VIII. fig. \pm; Plate X. figs. 1-19.
This new genus is represented by numerous specimens varying greatly in size, which illustrate different stages of growth.

The following are the measurements of some of the more perfect specimens:

Total height.	Maximum	breadtli.	Length of Trunk.	Thickuess of Trunk.
3 cms.	3	cms.	175 cms .	1.5 cms.
$2 \cdot 5$	3	"	$1 \cdot 5$	1 ,"
3.2	$1 \cdot 5$	"	$2 \because$	$0 \cdot 8$
0.9 ,	$1 \because$		0.8	$0 \cdot 6$

All were attached to pieces of Madrepore coral, probably Lophohelia sp.

General Deseription.

The colony consists of two sery distinct parts: (1) a hare trink, and (2) a polyp-hearing "pilens." The trunk is composed of a large number of longitudinal canals with the adjacent walls fused and densely packed with spicules, which give consisteney and rigidity to the colony. The upper umbrella-shaper portion or "pileus" so closely resembles a mushroom that the term "agariciform" might well be applied. The general colour of the pileus portion of the colony is a pale orange yellow, while the trunk is whitish. The zooils, whose tentacles are not retractile, are introversible within eylindrical stalks which are expandert termivally into characteristic octagonal disc-like expansions. The elose-set netagons eovering the

[^2]pilens, with a zooid appearing in the centre of each, present a very remarkable and zuique appearance.

> The Canal System.

Owing to the contraction of the spirit-specimens, the mode of growth is ly 10 means obvious, but an examination of varions stages, and of serial sections through these, makes the mole of increase in the number of the canals fairly clear. The centre of the stem is occupied loy a number of large canals whose cavities are about 3 mm . in diameter. These do not commmicate with one another, but at several points solenia can he seen comecting them with the canals in the cortical region whose cavities sary from $2 \mathrm{~mm} .-1 \mathrm{~mm}$. in diameter. The cortical canals terminate basally in a cul-de-sac, while upwards they increase in diameter so as to give rise to zooids on the pileus portion. The younger zooids are peripheral, and the whole colony may thms be compared to a boudle of compound racemes, the branches of which are hollow, and where the secondaries and tertiaries fuse to the primaries and grow to an equal length with them, so as to result in a corymb-like expansion. The eight mesenteries of the zooids are continued downwards almost to the very base of the canals, and at the same time the asulcar pair can be clearly distinguished by the characteristic ciliated groove. This is also the case in Siphonoyorgice and Lemnatic, while in some of the Nephthyidæe, e.g. Spongodes, only the asulcar mesenteries are contimed into the canals of the stem.

Origin of the Zooits.

Both the central or primary canals and the cortical or secondary canals give rise to zooids in a remarkalle and interesting manner. After attaining a certain heiglit, whieh is practically miform for the colony, the walls turn inwards, so that the cavity is thus reduced in diameter ; and when this is approximately one-half of the original measurement a vertical upgrowth again commences, thus forming a cylindrical cup-shaped projection, homologons to the vernea in the Axifera. When the height of this part is abont 4 mm . the circumference grows out into eight digitiform structures, while the wall again growing inwards fuses with the lower part at the eight indentations, forming a similar number of short blind tubes. This constitutes what might he termed the verruca proper. Growth still takes place, and a zooid is the result, consisting of a compratively long stalk bearing the anthocodia. That this is the mode of growth is clearly demonstrable in the younger colonies, and also in the less advanced polyps romel the periphery of the older colonies. As the colouies grow in size, the verruce also become more complicated, the terminal stellate part expanding horizontally to form an octagonal disc, with the indentation less pronomeed, containing cight eavities which correspomil th those formen loy the retractor muscles. To complicate matters still further, towarls the centre of the older colonies, vernce which correspond to the primary canals fuse with the adjoining verrnces so that the canals are now contimous,

The partitions of the canals are densely spiculose, in ardition to the outer felt-work, and a cross section shows that the spicules are arranged for the most part vertically; the cavities conforming to the tubercles on the spicules.

Structure of the Zooirls.

The zooids are about 5 mm . in height, and consist of a somewhat slender stalk bearing a cup-like anthocodia, the whole being densely covered with a felt-work of minute warty spindles. The tentacles are short and hroad, with a single row of pimnules on each side ; their bases are confluent, so as to enclose a capacious hollow -the oral dise, over which they can be iufolded. They are not retractile, but when at rest, being infolded, the biserial arrangement of the spicules forms a very primitive operculum.

The wall of the anthocolia is prolonged into eight triangular lobes, on which the spicules are also arranged biserially, so that each pair forms two sides of a triangle, the enelosed augle becoming more and more obtuse towards the base. This arrangement is continued down to the origin of the stalk, forming a series of ridges on the anthocodia. The triaugular projections thus function as a protection to the infolded tentacles. The stalk, though narow, is very elastic, because the zooid when at rest forms an introvert within it, which in turn sinks within the verruea. The zooid is withdramn by eight strong bauds of retractor museles, which thus form eight cavities running upwards, and corresponding to the canals in the octagonal dise. These retractor muscles pass downwards and are continnous with the eight mesenteries of the zooid.

The oral dise is spacious and circular, eontaining a rather large elliptical mouth-opening, which leads into a keyhole-shaped, richly-eiliated stomodaeum, in which a very distinet sulcus can he distinguished. The ectodermic cells in this region are more mumerous and the cilia are longer.

The mesenteries are all complete, and the muscle hanners on the sulear aspect are easily diseernible. The filaments are continued down the stem canals almost to the very base of the colony, while the asulear filaments show very markedly the ciliated grove so characteristic of the group.

Ova of enormous size are present in great abunlance attached to the mesenterial filaments. They vary from $0.1 \mathrm{~mm} .-0.6 \mathrm{~mm}$. in diameter, but although a considerable number of the larger and more mature ova were stained with horaxcarmine, no sign of segmentation could he found, so that the (plestion of viviparity for this genus must remain undecided.

A fact which may prove to he of great interest is that in every zooid examined there was a large number of Formninifera of varions kinds, aml in the decalcified sections examined the protoplasmir contents could be seen surrounded hy the ectodermic cells of the stomodieum, while many were also enelosed within the pinnules of the tentacles. When the zooids are at rest, the tentacles are infoldel ; and as many.

Foraminifial are enclosed ly the pinnules, they mist have entered while the polyp was expanded. The absence of food in the coelentera of most Alcyonarians and the frecuent presence of zoochlorelle point to the fact that many Alcyonaria are symbiotic organisms, hut the fact we have noticed suggests that some have the power of assimilating food from other somes.

Spicules.

The great majority of the spicules are arranged irregularly so as to form a dense felt-work on the surface of the eanals, giving consistency and rigidity to the whole colony; but many ate also emberded in the mesogluea. On several parts of the colony, however, the arrangement is partieularly regular, c.g. on the expanded disc of the verrnca, on the protective prolongations of the wall of the anthocodia, and also on the tentacles, where in all eases the arrangement is biserial.

All are irregulanly echinate, while many may be called warty. The spines vary greatly in form and size, some sharp and triangular standing at right angles to the spicules, others hooken and thorn-like, while others are truneated. They are, for the most part, simple, but compound forms are not infrecplent. No type, however, ean be said to be chamateristie of any particular part of the colony.

The spicules consist chiefly of straight and eurved spiny spindles, some approaching the "scaphoid" form so characteristic of the genms Gorgonia, thms showing convergence in another direction. Other forms are single chnos and clubs with a enrved termination, resembling "hockey-chul)s."

In the decalcified sections an organie residue was to be seen in the spieule cavities in the mesoglea, and an examination of the smaller and more transparent spicules showed that there was an organic axis with Jranches which passed out into the spiny projections.

It is interesting to note that the same has been recorded by Bourne for Lemnelice, the genus most closely related to our form.

The following measurements of spicules in millimetres were taken:
(c. Transparent spicules of the outer wall of the trunk.

Straight spindles, $0.85 \times 0.03 ; 0.75 \times 0.04$.
Curved spindles, $0.7 \times 0.025 ; 0.75 \times 0.03$.

1) Transparent spicules of the partition walls.

These show a greater preponderance of straight forms and hear more componid spines.
Spindles, 0.85×0.05.
Single clule, 0.7×0.03.
c. Transparent and pale yellow spicules of the dise-like expanded portion of the verruct.
On the whole these are smaller than the two preceding gromps and lardly so spinose.
Spindles, $0.65 \times 0.02 ; 0.6 \times 0.01$.
d. Spicnles of the anthocodia mostly pale yellow with few aud small spines.
Straight spindles, $0.6 \times 0.015 ; 0.4 \times 0.02$.
Curved spindles, $0.55 \times 0.015 ; 0.55 \times 0.01$.
Hockey-eluts, $0.6 \times 0.2 ; 0.4 \times 0.015$.
c. Pale yellow spientes of the tentacles mustly curved spindles and hockey-elubs.
Curved spindles, $0.45 \times 0.02 ; 0.35 \times 0.03$.
Hockey-clubs, 0.35×0.04.

Systematic Pusition.

The presence of the close felt-work of spicules already referred to places this form in the subfamily Siphonogorgine as defined by Wright and Studer. The genera Siphonogorgine (Kölliker), Chironcphthya (Wright and Stnder), Parctnephethya (Wright and Studer), and Scleronephetlya (Wright and Studer), neer not he considered; lout there is undoubtedly relationship with Lemnalia (Gray emend. Bourue). From this genus, however, our specimen differs essentially, in that it is not branched, and in having the anthocodire pedicelled. Other features, such as the form of the verruca, the nature of the anthooodie, the introversion of the zooids, and the general details of the colony, mark it off as a new and very distinct genus.

Diagnosis.

Colony upright, attached, mushroom-shaped (agariciform), consisting of (1) a stout, densely spiculose trunk composed of a longitudinally arranged system of ceenenchymal canals with fused walls, the more superficial of which appear as rils on the surface; and (2) a "pilens" portion bearing the zooids which are introversible within projecting verruce-cylinulrical extensions of the trunk canals, the upper portions of which are expanded peripherally into octagonal dises containing eight camals, corresponding to the eight compartments formed by the retractor museles. The anthocodie are borne on somewhat slender stalks, the elastic walls of which are continnations of the upper walls of the dises. The tentacles are not retractile, but are simply folded over the wide oral dise, the hiserial arrangement of the spicules forming a simple psendo-operculum. The oral dise is spacious, protected by eight triangular projections of spicules. The mouth, considerably elougated, leads into a richly ciliated stomodæum in which a distinct suleus can be distingnished. The mesenteries are complete, and are continned down to the very base of the stem canals. The spicules are inregularly echinate, and consist chiefly of straight and curved spindles; white some approach the "scaphoid" type. others are single "hockey-chuts," i.e. club-shaped with a curvel termination.

Locality: Station 333 ; $f^{\prime}: 31^{\prime} \mathrm{N}, 79^{\circ}: 33^{\prime} 45^{\prime \prime} \mathrm{E}$; 401 fathoms.

Order 1ll. PSEUDAXONIA, G. von Koeh.

Fimily Brharenlo.e.

Subfanily Briareine.
Paragorgiat splendens, n. sp.
Family Scerogorailuti:
Suberogergine költiker, Wright and Studer, var: ceylonensis, Thomson.
Keroütles komeni, Wright and Studer. ,, yrectis, Whitelegge.
Family Melitonilnes:
Parisis indica, n. sp.
Family Corallinde:
Pleurocorallium variabile, n. sp.

Fumily Briareid.e.
Subfamily Briareinae.
Paragorgia splendens, n. sp. Plate I. fig. 5; Plate Y. figs. 9 and 14.
A beautiful coral-red colony 125 chns. in height and 65 cms . in maximun breadth represents this species. The hranching is confined to one plane, and the polyps are directed mainly towards one aspect. The diameter of the main stem near the base is 8 mm . The psendaxial portion consists of long warty spindles tightly bound together, and is penetrated by numerous solenia. In the centre of the mass there are five main canals, four larger surounding a smaller. The cenenchyma is moderately thick, and has a glistening arenaceous appearance. In the oller part of the stem it is smooth, but on the younger portions and on the lranches it is marked by irregular ridges and furrows which extend into the verruce. The polyps may occur singly or in groups, the tips of the branches being swollen into large club-shapet leads containing sometimes nine or ten polyps. They slow the characteristic furowing of the cenenchyma, and when inturned present an eight-rayed structure. The tentacles are of a deeper red colour than the general ecencndyma. The colony is dimorphic, numerous siphonozooids occurring over the whole cortex. This plenomenon is appareutly absent in some of the other fragments. No trace of tentacles conld be found in the siphonozooids, hut the characteristic Alcyonarian internal structure is plainly visible, the muscle-hamers being most developed on the directive mesenteries.

The spicules of the axis (c) are typically spindle-shaped, irreyntarly covered
with markedly projecting warts or spines. Many have broad bifurcated ends. All are pink or colourless.

Those of the cortex (b) are of a salmon-pink colour. They are shorter and more closely covered with large warts, and some resemble a dumb-hell with a very short handle. The following measurements of length by breadth in millimetres were taken:
(a) $0.22 \times 0.045 ; 0.2 \times 0.04 ; 0.18 \times 0.04 ; 0.15 \times 0.03$.
(b) Spiny, $0.14 \times 0.02 ; 0.12 \times 0.03 ; 0.1 \times 0.025$.

$$
\text { Warty, } 0.12 \times 0.03 ; 0.1 \times 0.03 ; 0.06 \times 0.025 \text {. }
$$

We caunot refer this form either to the precisely described and figured P. nodosa of Koren and Danielssen, or to the vaguely described and doubtless different P. nodosa of Cray.

Locality : Station $284 ; 7^{\circ} 55^{\prime}$ N., $81^{\circ} 47^{\prime}$ E. ; 506 fathoms.

Family Sclerocioraider.

Suberogorgia köllikeri, Wright and Studer, var. ceylonensis, Thomson.

$$
\text { Plate IV. figs. } 11 \text { and } 12 .
$$

This species is represented by two small yellowish-hrown fragments, 5.5 cms . and 57 cms . respectively in height, without basal attachment.

The fragments are branched in one plane, the branches arising almost at right angles to the stem and then turning upwards and running roughly parallel with it.

The axis is almost eylindrical, with a diameter of about 3 mm . in its thickest part, and 0.9 mm . at the tips of the hranches. In texture it is selerogorgic, and is marked on opposite sides by two shallow winding grooves for the nutrient canals.

On the stem the polyps arise without any regular arrangement, anywhere except on the grooves; on the branches they are arranged in two winding rows, one on each lateral face. They are capable of complete retraction within the verruca, which are low truncated cones varying from $0.9-1.5 \mathrm{~mm}$. in diameter. The aboral surface of the teutacles bears spicules arranged en chevron in the lower part, but parallel to the length of the tentacle near the tip. These form an eightrayed pseudo-operculum when the tentacles are withdrawn.

The gencral cenenchyma is thin and densely packed with spicules.
The spicules are spindles, which are sometimes almost oval in shape, and some small gtuadriradiate forms. All are covered by warty protuberances. The following measurements were taken of length and breadth in millimetres:

The large warty spindles, $0.22 \times 0.06 ; 0.2 \times 0.06 ; 0.2 \times 0.04 ; 0.14 \times 0.08$; 0.11×0.1.
The small warty spindles, $0.14 \times 0.03 ; 0.13 \times 0.04$.
The spicules of the tentacles, $0.15 \times 0.035 ; 0.13 \times 0.03$.
The quadrimatiate forms, $0.08 \times 0.06 ; 0.075 \times 0.05$.

The quadriradiate forms are all marked by an X -shaped mark in the centre.
This specimen differs from the typical suberogorgia köllikeri in having its branching almost complately in one plane, in the arrangement of the polyps on the smatler hruches, and in the smatler size of the spicules.

Locality : Andamans; 270-45 fathoms. Previonsly recorded from Ceylon and Zanzibar.

Keroëides koreni, Wright and Studer. Plate 1. figs. 6 and 7.
A single specimen was obtained from the neighbourhood of the Audamans. It measures $3: 3$ cms. in height, and has a maximum breadth of 2.9 cms. The hrauches are few in number, and the white polyp-heads present a lieantiful contrast with the hright vermilion red of the branches.

Locality : Andamans; 270-45 fathoms.
Previously recorded from: "Challenger" Station 232, Hyalonema-ground, off Japau ; depth, 345 fathoms. Also from Funafuti (Hiles) ; 40-90 fathous.

Keroëides gracilis, Whitelegge. Plate IV. figs. 1, 2, and 3.
To this species we refer a number of fragments from the vicinity of the Andamans.

As far as can be made out, the colony is bravehed in one planc, and has a flat spreading basal attachment. The branches are given off for the most part alternately, but this is not strictly adhered to.

The axis is sclerogorgic, rigid, and dense, ahmost cylindrieal in shape, without any distinct traces of grooving. It is hrownish-yellow in the older parts, becoming paler in the younger.

The polyps arise irregularly on the main stem and the larger branches, tending, however, to locome arranged alternately on the smaller branches. They are capable of complete retraction within the verruce, and the tentacular spicules form a low cight-rayed operculum. On the aboral surfare of the tentacles the spicules are arranged with their long axes parallel to the length of the tentacle. The distance between adjacent verrucx may be 3.5 mm ., or they may lee touching one another.

The verruce are cylindrical, composed of warty spicules arranged longitudinally, and vary in height from $1-2 \mathrm{~mm}$., with a basal diameter of ahout 1 mm .

The general conenchyma is thin, and consists of one layer of warty spicules, which are amanged very irregularly, with small, hrightly-coloured spicules filling the spaces between. In the older $i^{\text {nats }}$ of the stem and hanches they are small Hat irregular dises armanged transversely, with here and there, especially near the
origin of a branch, a number of long flat spimilles arranged longitudinally. In the younger parts of the branches this arrangement is replaced by one in which the long spindles predominate. These are lougitudinally arranged, and very few dises are to be seen.

The following measurements were taken of length and breadth in millimetres: $3.2 \times 0.35 ; 1.4 \times 0.35 ; 0.6 \times 0.2 ; 0.5 \times 0.25 ; 0.4 \times 0.22 ; 0.4 \times 0.35 ; 0.35 \times 0.1$.

The tentacle spicules are $0.11-0.15$ in length ly $0.02-0.03$ in brealth.
This form comes very near Keroërdes gracilis, but the following differences may lie noted :

> Kerö̈ites !racilis, Whitelegge.

Branehes alternate.
Polyps alternate.

Spicules are spinclles and irregular forms ; placed transversely on and in the neighbourhood of the verruce.

Spicules reaching 2 mm .
Spicules bright brick red. Colour of colony coral red.

Keroë̀des gracilis

(Indian Ocean form).
Bramehes not strietly alternate.
Polyps irregular on main stem and larger branches, tending to become alternate on smaller branches.
Spicules on the older parts of stem and branches very irregularly arranger]; in the younger parts long spindles regularly arranged predominate.
Spicules 2 mm . and over.
Spienles colourless or faint pink.
Colour of colony pale pink, and in this respect agreeing with the specimen described by Miss Hiles.

Locality : Andamans; 270-45 fathoms.
Previously recorded from Funafuti and British New Guinea.

Family Melitouid.e.

Parisis indica, n. sp. Plate IV. figs. 4, 5, 8, and 9.
This species is represented by several fragments, the longest of which is 45 mm. in length.

The colony is white in colour, and much branched in one plane. The branches rise from both sides of the axis, but on the main branches the secondary brauches often rise from one sile only.

The axis is composed of alternate horny and caleareons joints, the latter being from $4-6$ times as long as the former, and giving off the hranches. Externally it is deeply groored, and mmerous solenia surround it, one in each groove. The calcareous internodes are composed of spicules closely cemented together, and in the horny norles there are numerous small spicules. The groores are seen on the norles as well as on the internodes.

The polyps are aranged on each lateral suface in a simous row, which appears like two rows with the polyps of the me alternating with the polyps of the other. They also occur in fours, either in a spiral or in a whorl. The verruce are truncated cones, about 1 mm . in height, and standing about 2 mm. apart.

The surface of the colony is entirely hidden ly an incrustation of sponge and Pelythoot, which obsemres the form of the calyces.

When freed from the incrustations the surface of the coenenchyma presents a fine tessellated appearance, which is also seen on the polyp ealyces. It appears thin, but this may be the effect of the inerusting sponge.

The spicules are (a) spindles covered with numerous rongh prominent warts; (b) a few more oval or globular in shape; and (c) a few duadrinadiate forms with X -shaped marking. The following measurements were taken of length and lorealth in millimetres:
(a) Spindles, $0.2 \times 0.075 ; 0.16 \times 0.08 ; 0.14 \times 0.08$.
(b) Clobular forms, $0.3 \times 0.2 ; 02 \times 0.1$.
(c) Qualriradiate forms, 0.10 from tip to tip one way $\times 0.10$ from tip to tip the other way; 0.12 from tip to tip one way $\times 0.08$ from tip to tip the other way.
The species is near to Parisis fruticosa, Verrill, but is separated from it by (1) the smaller size of the calyces and of the spicules; and (2) by the pavementlike appearance of the coenenchyma and calyces.

Locality : Audamans; 8 miles west of Interview lsland; 270-45 fathoms.

Family Coralleni,z.

Pleurocorallium variabile, n. sp. Plate I. fig. 9; Plate V. fig. 6; Plate 1X. fig. 13.
To this species we refer a number of broken fragments, the largest of which is 13.5 cms . in height and 6.2 cms . in width.

The colony is very profusely branched in one plane. The branches are tortuous, and show little, if any, sign of lateral compression. They arise from the antero-lateral surfaces of the stem, and diminish gradually in thirkness towards their tips. From the sides of the large branches and of the stem, numerons short branchlets arise.

The axis is hard, not easily indented with a knife, solid, almost cylindrical in section in some parts and slightly oval in others. It is white in colour, and its surface is marked by very fine striations, often very faint.

The cenenclyma is thin, creamy white in colour, and full of closely packed small spicules which look like glistening sand grains.

The polyps ocemr irregnlarly on the anterior sufface of the stem and branches. The tentarles are alrout 0.5 mm . in length, yellowish in colour, and elosely covered loy small spicules.

The salmon-pink verruce present a fine contrast to the creamy white of the general conenchyma and the yellow of the tentacles. They are prominent, almost eylindrieal in shape, marked by eight longitudinal ridges, and reaching a height of 2.7 mm . When the tentacles are retracted, the apices of the verruce present the appearance of eight-rayed stars.

The spicules of the cortex are of two kinds: (1) Octoradiate spieules, with a short shaft and terminal tubercles. Several tubercles project at each end of the spicule at right angles to the shaft. The large tubercles may themselves be covered with smaller tubercles. These spicules vary in length from $0.06-0.08 \mathrm{~mm}$., and in width from $0.04-0.05 \mathrm{~mm}$.
(2) Spicules that resemble opera-glasses in shape. They consist of two globose masses somewhat flattened at one end, and bearing at the other end short processes, variable in shape, with several tubereles. They are on an arerage 0.06 mm . in length, and 0.04 mm . in width.

To these may be added a very few rough spiny spindles from $0.06-0.09 \mathrm{~mm}$. in length, and 0.02 mm . in diameter.

To this species we also refer a few fragments from the same locality which differ in eolour, being rosy red with a yellowish-brown cenenchyma. The arrangement of the polyps and the details of spicules and axis are, however, much the same as in the specimen described.

This species differs from Plewocorallium jolnsoni, Gray, (1) in heing more profusely branched, and (2) in having more prominent and differently arranged verruce.

The spienles in this speeies agree in type with the deseriptions given of P. johnsoni by Gray and Ridley; but it seems difficult to fit the specimen deseribed by Moroff (1902) as Pleurocorallium conficsum, n. sp., into the genus, for he says: "Coenenchym schwach mit vielen bis 0.25 mm . grossen Spicula besetzt, die cine gerade oder gekriimme spindelfömige Gestalt aufweisen. Nicht selten sint auch plattenförmige Spicula, sowie Vierlinge zu sehen."

Locality : Station 284; $7^{\circ} 55^{\prime} 00^{\prime \prime}$ N., $81^{\circ} 47^{\prime} 00^{\prime \prime}$ E.; $50 G$ fathoms.

Order IV. AXifera, G. yom Koch.
Family Dastiontilli, e.
Lepidegengien vervilli, Wright and Studer.
Choysogorgin ontentatis, Versluys.
", flexilis, Wright and Studer.
," dichotome, n. sp.
" irregularis, n. sp.
", indica, 11. sp.

Lepidogorgia verrilli, Wright and Studer. Plate III. figs. 5 a and 51 .
This species is represented by three fragments which apparently compose one specimen and a portion of another.

In one the basal attachment is present, and consists of a number of root-like processes very calcarcous and trminslucent.

The axis is thin and hair-like, very calcareons and brittle, but slightly flexible near the tip.

The polyps are 3.3 mm .in height, arranged uniserially at intervals of nearly 6 mm .
The cuenenchyma is moderately thick, slightly more so on the side bearing the polyps.

On the stem the spicules are arranged side by side; on the polyp an eightrased pseudo-operculum is formed by spicules on the bases of the tentacles, and for a short distance below the origin of the tentacles the spicules are arranged in cight rows. The spicules are irregular in shape, eurved or straight, and sometimes reaching a length of 2 mm .

Locality: Andaman Sea ; 375-490 fathoms.
Previously recorded from off Japan and from Maeassar Straits.
Two other specimens (B and C) agree on the whole with A, but differ in minor details, as shown in the following table :

Axis.	Cænenchyma.	Polyps.
A. Sipuare at hase, cylindrical a little farther up ; slender, 0.7 mm . in diameter, becoming hair-like ; brittle, very calcarcous, slightly flexible near the tip; iridescent; surface ristged.	Very thin, axis shiningthrough.	At distances of 5.5 mm . Meight 2-2.8 8 mm .

Axis.	Conenchyma.	Polyps.
B. Axis cylindrical throughout its whole length; slender, 0.5 mm . in diameter at lower end, then threadlike; lnittle, very calcareous, slightly flexible near the tip; inidescent; surface ridgred.	Slightly thicker than in A. Axis only faintly visible.	At distances of 6 mom. Height up to 4 mm .
C. Axis square, with the angles rounded off farther up; fairly stroug, $1 \cdot 15$ mm . in diameter at base, beconing hair-like at tip; brittle, very calcareous; slightly flexible near the tip, golden in colour; surface ridged.	Thin, axis distinctly visible.	At distances of 5-9 mm., but in the longer intervals there is usually a young polyp between. Height up to 4 mm .

COMPARATIVE TABLE OF SPECIES OF LEPIDOGORG1A.

Species.	Shape of Axis.	Colour.	Branching.	Surface.	Texture.	Cenenchyma.	Polyps.
L. petersi, Wright and Studer.	Irregularly four-sided, with angles rounded below.	Yellow, with marked golden lustre.	None.	Marked by mumerous sliort grooves.	Brittle, very calcareolls.	Thin, membranous, with few spicules.	At intervals of $3-3.5 \mathrm{~mm}$. may be 7 mm . in lieight, but usually abont \pm mm., with the axial side concave; the three tentacles on the axial side smaller than the others, and the median axial tentacle rulimentary.
L. verrilli, Wright and Studer.	Cylindrical.	Yellowishwhite, with slight golden Instre.	None.	Smooth.	...	Thin, with few spicules.	At intervals which vary from $4-1 \cdot 7 \mathrm{~mm}$, or from $2-6$ mm. ; usually $3-3.5 \mathrm{~mm}$. in height ; axial side concave with very small tentacles.
L. challengeri, Wright and Studer.	-	\ldots	None.	Lower part as in L. petersi, upper portion nearly smooth.	\ldots	smooth, with very few spicules.	At intervals of from 4-5 mm., but may be 7 mm .; $2 \cdot 5-3 \mathrm{~mm}$. in height ; spicules in 8 rows; axial side concare, witharudimentary tentacle ; poly's bilaterally symmetrical.
L. tracilis, Verrill.	\ldots	\cdots	None.	Smooth.	\ldots	Thin, with spicules.	At intervals of from $5-10$ mm. ; tentacles all of equal size, and short. Base often thicker than axis, and spicules longiturlinally arranged.
L. fruyilis, IV right and Studer.	Axis a creeping stulun.	\ldots	None.	...	Axis feebly calcareolls	Fery thin, almost without spicules.	1-5 nmm apiat ; $1-4 \% \mathrm{~mm}$. in leight ; 8 rows of spicules on middle of poly]-hody.

Chrysogorgia orientalis, Verslnys. Plate VII. fig. 2.
This species is represented by two fragments, portions of a larger colony.
The axis of the main stem or branch is yellowish and iridescent, rigid and brittle, about 1 mm . in diameter. The branching is very profuse, and the arangement is irregular.

One polyp is present on each node, but sometimes one occurs exactly at the point of divergence of two branches. The polyps are long and slender, 1.7 mm . in height and 1 mm . in oral diameter. They are hroad at the hase, then narrow, and again expmoted. The spicules are aranged longitudinally, except around the hase, where they are arranged oblifuely transverse to the long axis of the polyp.

The spicules are spindles with small rough wart-like protuberances. They show marked variation in length, in the degree of roughness, and in shape, but all may he classed as spindles or that sword-shaped spicules witly serrated edges. Several show an X-shaped mark about the middle, as if they were incipient or reduced f tradriradiate forms. Their measurements, length hy headth in millimetres, are as follows:

Spindles, $0.8 \times 0.1 ; 0.7 \times 0.1 ; 0.6 \times 0.12 ; 0.5 \times 0.12 ; 0.3 \times 0.04$; 0.25×0.05.
Flat, sword-shaped, $0.35 \times 0.05 ; 0.23 \times 0.05$.
Locality: Station $2 ; 6^{\circ} 32^{\prime}$ N., $79^{\circ} 37^{\prime}$ E. ; 675 fathoms.
Previonsly recorded from East Indian Archipelago (Ceram Sea and Timor Sea).

Chrysogorgia flexilis, Wright and Studer. Plate II. fig. 3.
This species, which is represented hy several specimens, belongs to Versluys' sulu-Group A 2 . The colonies vary in height from $100-130 \mathrm{~mm}$. They are lushlike or bottle-brush-like, and have a compact appearance. 'The hasal attachment of one specimen is a thin, flat calcareous expansion, white in colour ; in another case there were two root-like stolons.

The axis is brown with a greenish tinge in the lower part, and yellow with a marked goliten lustre in the upper part of the stem and in the branches. In diameter it varies from $1-1.5 \mathrm{~mm}$. at the base.

The branches are arranged in dextrorse $2 / 5$ spirals. At the origin of each branch the stem is pushed a little to the opposite side and thus presents a ziyzag appearance, which is more maked in the upper part of the stem than in the lower. It secms as if the stem were spirally twisted. The length of the internodes of the stem varies from 1.5 mm . in the lower part to 4.2 mm . in the middle and upper part, and the listance between two lumehes that lie directly over one another varies from 12 mm . in the lower part to 18 mm . in the milllle and upper part of the stem.

The lower branches are broken off, but their origins are easily distinguished, except on a short hasal portion about 7 mm . in length. Wach hanch is divided in
dichotomous fashion with a more or less marked predominance of one of the components of the first division.

On the older parts there is one polyp to each internode, placed almost at the point of the next division, but sometimes a little below the lifureation, especially in the younger parts of the colony. At the end of the twig there are two polyps, one at or near the tip and the other about lalf-way down the internode. The polyp has a large swelling at the base which almost surromeds the stem, it is then contracted, and it again swells out at the tentacular portion, thus appearing very like a globular vase with a neck. Un the swollen portion of the polyp placed near the tip of the twig, the spicules are arranged transversely and then longitudinally, but in the others they are arranged longitudinally. (on the aboral surface of the tentacles there is a band of spicules. The polyps vary in height from $1 \cdot 9-2 \cdot 3 \mathrm{~mm}$.

The coenenchyma is very thin and membranons, and allows the axis to shine through. Though much weathered, it shows in parts a single layer of closely apposed spicules

The polyp spicules are spindles, sharp or blunt at the ends, straight or curved, and covered by minute tubercles. The following measurements were taken of length and breadth in millimetres:
$0.6 \times 0.08 ; 0.5 \times 0.06 ; 0.42 \times 0.06 ; 0.25 \times 0.05 ; 0.13 \times 0.03 ; 0.06 \times 0.02$.
Some of these dimensions are large, for in the Siboga specimens they were $0.12-0.26-0.33 \mathrm{~mm}$. in length by $0.06-0.07 \mathrm{~mm}$. in breadtl, and in the Challenger specimens $0.25-0.41 \mathrm{in}$ length by $0.03-0.07 \mathrm{in}$ breadth.

The polyp spicules include several irregularly shaped spindles, and a few incipient quadriradiate forms with a distinct X-shaped marking in the middle.

The spicules of the crenenclyma are flattish spindles, blunt at the ends, and covered by small tubercles with a serrated appearance at the edges. A number have an X -shaped marking at the middle. Their measurements are as follows:

$$
0.22 \times 0.04 ; 0.14 \times 0.03 ; 0 \times 13 \times 0.03 ; 0.06 \times 0.03
$$

Embryos were found in several of the specimens.
Localities : Station $333 ; 6^{\circ} 31^{\prime}$ N., $79^{\circ} 38^{\prime} 45^{\prime \prime}$ E.; 401 fathoms. Station 267 ; $7^{\circ} 02^{\prime} 30^{\prime \prime} \mathrm{N} ., 79^{\circ} 36^{\prime} 10^{\prime \prime} \mathrm{E}$. ; 457-589 fathoms. Station $254 ; 11^{\circ} 16^{\prime} 30^{\prime \prime}$ N., $92^{\circ} 58^{\prime} \mathrm{E} . ; 669$ fathoms. Station $241 ; 10^{\circ} 12^{\prime} \mathrm{N} ., 92^{\circ} 20^{\prime} 30^{\prime \prime} \mathrm{E} . ; 606$ fathoms.

Previously recorded from coast of Chiloe and East Indian Archipelago.

Chrysogorgia dichotoma, n. sp. Plate VI. fig. 3.
This species is represented by a damaged specimen, apparently the upper portion of a colony.

The close-set branches are arranged in a sinistronse hat quite irreandar spiral.
The axis is very brittle and is slightly kneed at the origin of each branch, so that it has an apparently spial course. It is brown with a tinge of green in the
lower parts, and golden yellow in the younger parts of the stem and branches. It is very calcareous, and is cylindrical with a smooth surface.

The internodes are about 2 mm . in length, and the distance between two hanches that stand directly over oue another varies from $7-10 \mathrm{~mm}$. Each branch divides dichotomonsly with a predominme of one of the elements of each bifureation, and the branching of each main branch is almost wholly in one plane.

The polyps are rery small, and arranged on the hranches in short spirals. They are somewhat conieal in shape, the larger 0.5 mm . in length by 0.25 mm . in breadth. The tentacles are long, and have an aboral hand of spicules arranged longitudinally in two or three rows.

The polyp-spicules are spindles or rods, blunt or rounderl at the ends, and envered by minute small spines. The following measurements were taken of length and breadth in millimetres:

$$
0.16 \times 0.02 ; 0.12 \times 0.02 ; 0.11 \times 0.015 ; 0.08 \times 0.01 .
$$

The cenenchyma is very thin, and shows no spicules. It allows the axis to shine through, throughout its whole length.

Locality : Station 237 ; $133^{\circ} 17^{\prime}$ N., 9307^{\prime} E. ; 90 fathoms.

Chrysogorgia irregularis, 11. sp. Plate II. fig. 4 ; Plate IX. fig. 6.
This species is represented by a number of broken portions of a colony.
There are 10 polyps on the largest fragment, and the cenencliyma is also almost entirely lost.

The axis is hard, hrittle, and ealeareous, iridescent and golden yellow, deep in tint in the lower part, but lighter in the upper part of stem and hranches.

The branching partakes of the nature of a helicoid cyme, with the fourth branch often rising directly over the first; but there is no regular arrangement. There is usually one polyp for each uorle, hut on the younger branches two are often found on a single node. Eaeh polyp has eight projecting points, and is hellshaped, the wide end closed by the infolded tentaeles, which form an eightrayed star, and have a coating of massive spicules on their aboral surface.

The spieules of the polyps are chietly rod-shaped, and are arrauged in a spiral on the body of the polyp. This arrangement gives place at the oral end to an arrangement loy means of which eight points are formed from so many sets of converging spicules. The hase of the polyp is considerally larger than the branch on which it staurls, so that the branch seems to run through the base.

The spicules of the general crenencliyma and of the polyps are very irregular in shape, some rol-shaped, some spindle-shaped, and some very irregular and flat. They are smooth, with the exception of a few of the more irregular forms, which show slight papille on their surface or at the edges.

Locality : Station $202 ; 7^{\circ} 4^{\prime} 4^{\prime \prime}$ N. $82^{\circ} 2^{\prime} 45^{\prime \prime} \mathrm{E}$; 695 fathoms.

Chrysogorgia indica, n. sp. Plate 1ll. fig. 6.
This species is represented by a number of very incomplete fragments, which present a striking appearaure owing to the contrast between the white polyps ant the deep bronze of the axis.

The axis is hard, brittle, and cylindrical.
The branching in the fragments is dichotomous and very profuse. The cylindrical polyps are of a beautiful white colour, and stand at right angles to the axis. The base forms an inverted V, which passes down the sides of the axis and almost meets at the other side. There is one polyp to each internode near the younger portions; in the terminal portions two may be present; in the older portions there may be two or three, and on one internode as many as four were seen. The polyp spicules are arranged longitudinally and regularly. On the aboral surface of the tentacles there is a band of longitudinally arranged spicules.

The ceenenchyma is very thin and membranons, and allows the axis to shine through in all its length.

The polyp spicules are spindles, straight or slightly enrved, and romnded at the ends, or irregular flattish rods. They have small tubercles on the surface, and many of the larger forms seem smoother than the average, except that their edges present a marked serration. The following measurements were taken of length and breadth in millimetres:
$0.8 \times 0.2 ; \quad 0.6 \times 0.13 ; \quad 0.3 \times 0.05 ; \quad 0.25 \times 0.02 ; \quad 0.2 \times 0.05 ; \quad 0.16 \times 0.02 ;$ 0.1×0.04.
The spicules of the coenenchyma are smaller than the polyp-spienles, but rery similar in shape and appearance. The following measurements were taken :
$0.35 \times 0.05 ; \quad 0.3 \times 0.025 ; 0.3 \times 0.05 ; 0.13 \times 0.01 ; 0.12 \times 0.02 ; 0.07 \times 0.06 ;$ 0.06×0.02.
Locality: Station 334; $6^{\circ} 57^{\prime}$ N., $79^{\circ} 33^{\prime} \mathrm{E}$. ; 568 fathoms.

Family Isid.e.

Subfamily Ceratoisidine.
Ceratoisis gracilis, n. sp.
Acanella rigida, Wright and Studer.
" rolusta, n. sp.

Ceratoisis gracilis, n. sp. Plate VI. figs. 6 and $6 a$.
This species is represented by several picees, the longest of which measures 328 mm.

The axis is cylindrical, and consists of horny nodes and calcareous internodes. It is unhranched, long and slender, tapering gradually, and only slightly fiexible
in its lower part. The horny nodes are short, ahont 1 mm . in length, while the calcareous internoles are long, on an average 9 mm. in length in the largest specimen. The internodes are hollow, and are formed of concentric layers; their surface is smooth, and they are uniform in thickness exeept for a slight swelling just at their junction with the horny nodes. Through the centre of the horny nodes a slender caleareous rod runs, forming a junction between the adjacent internodes.

The conenchyma is thin and transparent, allowing the notes and internodes to shine through. It contains minute spicules. The polyps are long and slender, and are arranged in a sinistrorse $2 / 3 \mathrm{~s}$ piral. On each intemode there are polyps, and their apices are more or less directed towards one side. They have long supporting spicules on the walls, somewhat stronger on the abaxial side, and several always project heyond the retracted tentacles. The polyps are $3-4.5 \mathrm{~mm}$. in length.

The tentacles are short, and have one row of short blunt pinnules on each side of the midde line, thins leaving a free space on the oral and aboral surfaces. The aboral free space is covered by a band of very minute flattish spicules, which are armanged with their long axes perpendicular to the length of the tentacle.

The spicules are of the following types:

1. Long spindles which support the polyps, $0.9-3.2 \mathrm{~mm}$. in length, $0.07-0.1$ mm. in breadth.
2. Short flattish spindles, $0.075-0.3 \mathrm{~mm}$. in length, $0.02-0.03 \mathrm{~mm}$. in breadth.
3. Short flat spicules with broad spathulate euds, $0.2-0.45 \mathrm{~mm}$. in length, $0.04-0.08 \mathrm{~mm}$. in maximum hrealth.
This species is viviprorous. Several embryos were found in one polyp. They are globutar bodies, 0.6 mm . in tiameter:

Locality: Andamans; 270-45 fathoms.

Acanella rigida, Wright and Studer. Plate 1N. fig. 14.
A complete colony, bushy in shape, 103 mm . in height.
The loanches arise from the horny nodes in verticels of two, three, or four. The first whom of branches is given off at the fourth homy nole, a distance of 23.5 mm . from the hase.

The axis has caleareons root-like processes. The solid calcareons internotes are groovel, short near the base, varying in length from 3-6.5 mm., but long near the extremitios of the axis and lranches, often reaching in the latter a length of $20-21 \mathrm{~mm}$.

The polypare prominent, rigil, and arise singly. They are covered with fusiform spicules, and have a length of 33 mm . The tentacles are not capable of complete retraction.

Locality : Laceadive Sea; $70: 3$ fathoms.
Previously recorded from "Challenger" Stations 194 and 194 I, oft Banda; 200 and 360 fathoms.

Acanella robusta, n. ip.

This species is represented hy a large colony, 250 mm . in height, without auy trace of lasal attachment.

The colony is very bushy, the branches heing given off from all sides of the stem. They arise from the main stem singly or in twos or fours, and from the primaries the secondaries anise either singly or in twos or threes. Anastomosis of the branches orcms in a few places, but it is by no means common.

The axis is composed of alteruate homy and calcareous joints, the latter marked by longitudinal ridges few in nmmber and often indistinet.

The polyps are inegularly disposed on the stem, and few in number. On the branches they are placed alternately on opposite sides, hut in several cases they arise so nearly at the same level as to seem opposite.

The polyps are firm and rigirl, $3-5 \mathrm{~mm}$. in height, with a hasal diameter of ahout 2 mm . A number of projecting points extend beyond the incurved tentacles. On the polyp body the spieules, some of which are visible to the naked eye, are arranged in two layers, the inner layer consisting of small spicules irregularly disposed. the superficial laycr consisting of large spicules with no obvious arrangement, some transrerse in the lower part, some longiturinal esperially on the upper part, but altogether placed so as to form a firm protective and supporting covering to the calyx. In many cases they seem to be more numerous on the abaxial side of the polyp, but in the polyp near the end of a twig they seem to be equally developed on all sides.

There is a band of longitudinally disposed spicules on the aboral surface of each tentacle, each band consisting of $3-4$ rows. On the lateral surfaces small spicules are arrauged transversely, and closely packed together so as to form a complete coating.

The coenenchyma is very thin, with a few small spicules scattered irregularly. Near the base of a polyp the spicules are somewhat larger.

The polyp spicules are straight or curved spindles, and a few smaller forms which may be called rods. They are all covered hy small sharp tubercles. The following measurements were taken of length and hreadth in millimetres :
$3.2 \times 0.3 ; 2.6 \times 0.23 ; 1.7 \times 0.1 ; 0.5 \times 0.1 ; 0.2 \times 0.03 ; 0.1 \times 0.017 ; 0.04 \times 0.01$.
The smallest of these spicules come from the lateral surfaces of the tentacles; they are Hattish. and have prominent tubereles on the eflyes.

The spientes of the ecencnchyma are rods, few in number and small in size, $0.14 \times 0.025 ; 0.18 \times 0.025$.

This suecies differs from . Acromelle rigith in the arangement of the polyps, and in the details of the spiculation.

Locality: Station $325 ; 18^{\circ} 18^{\prime}$ N... $93^{\circ} 25^{\prime} \mathrm{L} .4$: 843 fathoms.
lon another specimen the lnanches arise from the man stem in twos on in threes, and from the main hatuches the secondaries arise singly or in twos.

The axis is composed of altemate homy and calcareons joints, the latter many times longer than the former, and marked by longitulinal furrows. The first calcareons interuode is very short, 35 mm ., while the second measures 17 mm . in length. The lowest joint is calcarems, and from its base large root-like processes spread out, pure white in colour and very brittle.

The arrangement of the polyps cannot be definitely made ont; in some places they seem to lee placed more or less alteruately, in other places they seem to be restricten to one side of the hranch. They are loug. 3.75 mm . in height, and stam up sharnly from the axis. They are somewhat contracted near the middle, and then swell out again just helow the base of the tentacles. The spicnles are arranged on the polyps at an acute angle to the longitulimal axis, amd none reach the whole length of the polyp. On the ahoral surface of each tentacle there is a narrow hand of two rows of spicules arranged longitudinally; on the lateral surfaces narrow hands formed of very small spicules run ont to form supports for the bases of the pimmles.

The chenencliyma is very thim, aml contains minute scatterel spicules.
The spicules of the polyps are straight or slightly curved spindles, and a few rod-shaped forms. All are covered ly minute spine-like tulnereles. The following measurements were taken of length and Jreadth in millimetres:

$$
2 \times 0.13 ; 1.4 \times 0.12 ; 0.4 \times 0.05 ; 0.22 \times 0.05 ; 0.08 \times 0.01 .
$$

Some of the larger spicules lave a narower part near the middle, and the smallest have more prominent spines. The spicules of the cemenchyma are short ronls, either hont or pointel at the ends, and in some cases constricted near the mildle. The following measmements were taken:

$$
0 \because \times 0.0+; 0.25 \times 0.045 ; 0.14 \times 0.02
$$

Locality: Station $25 \pm ; 11^{\circ} 16^{\prime} 30^{\prime \prime} \mathrm{N} ., 92^{\circ} 58^{\prime} \mathrm{E}$; 669 fathoms.

Fimily Prewionm,

Subfamily Primnoiniv.
Stachyorles allmemi, Wright and Studer.
Stenella horridre, 11. sp.
Thoucarella moseleyi, Wright and Stuler, var. spicata, 11.
Caligorgia flabellum, Elureuberg.
,, indica, n. sp.
:, Inbire, 11. sp.

Stachyodes allmani ($\mathrm{Wr}_{\text {right }}$ and Stuler) $=$ Culypterinus. allmomi, Wright and
Studer: Plate II. figs. 1, 5 ce, ant 5%.
Two fragments, evidently portions of a larger colony. The larger (.1), which is branched, is 196 mm . in height; the smaller (B), which is untranched, is 147 mm. in leight.

The larger specimen differs from the typical habit of the species, imasmuch as the brauches arise alternately ou three sides of the axis.

The axis has at its lower end a diameter of 1.5 mm . in A and 1 mm . in B. It is very brittle, slightly more flexible towards the apices of the branehes, and consists of a homy matrix filled with calcareous partieles.

The ecenenchyma is so thin that the iridescent axis shines throngh.
The polyps are arranged in verticels of four, with a distance of 2 mm . between the orisins of the verticels. This arrangement gives the polyps a somemhat bilateral appearance, although they arise from three sides only, learing on one side a bare strip, which is formed into a cimal hy means of the large flat polyp spicules.

The locality of this specimen confirms the suggestion made by Wright and Studer that C. allmani is a deep-sea species.

Locality: Laccadive Sea ; 703 fathoms.
The collection includes a complete young colony belonging to this species. It is unbranched with the exception of a small stump near the base, which is the basal portion of a hranch or twig, and it reaches a height of 41 mm .

The polyps are arranged in a bilateral manner, in verticels of :3-4, and the apex of the polyp when at rest is directed downwards.

The development of the coverel channel-like groove on the free side of the axis is well seen. Λ s in the large specimens, the cenenchyma is thin and allows the axis to shine throngh. The hasal attachment consists of a flat spreating pertion.

Locality : Station 226; 8" $36^{\prime} 15^{\prime \prime} \mathrm{N} ., 81^{\prime \prime} 20^{\prime} 30^{\prime \prime} \mathrm{E} . ; 54^{2}$ fathoms.
To this species we also refer a large mumber of dimater amol hoken fragments from the following localities:

Station $367: 7^{\circ} 02^{\prime} 30^{\prime \prime}$ N., $79 \quad 30^{\prime}$ E. ; 457-58! fathoms. Station 334: $66^{\circ} 55^{\prime}$ N., $79^{\circ} 39^{\prime}$ E. ; 568 lathoms. Station $2: 630^{\prime}$ N. $79^{\circ} 37^{\prime}$ E.; 675 fathoms. Previonsly recorderd from lieefs, fïji.

Stenella horrida, 11. sp. Plate Y. fig. 18: Plate 1X. fig. 3.
Two specimens of a beatiful colony. The larger, which lacks its base, is 53 mm . in leeight, with a maximum wielth of 38 mm .

The base of the smatler piere is a Hat expansion, from which the stem rises. The stem is dank hrown in colour. homy in texture. with a poor development of calements corpuseles. It has a diameter of 1.3 mm, at its lower end, and heromes lighter in colour and filifom towarls the embs of the hatmeses aml twigs.

The banching is nearly in ouc phane, and is somewhat profuse. The polyp, which are armaged in an irreglar close spiral all romel the axis, vary in height from $1.5-2 \mathrm{~mm}$., and hare al hasal diameter of $1 \stackrel{2}{2} \mathrm{~mm}$. The oral end is surmounter] ly $6-8$ projecting spines.

The thin cenenchyma shows flat scale-like spicules, and it does not allow the axis to shine throngh.

The polyp spicules are (1) flat scales; (2) spindles straight or curved; (3) spindles shaply hent at an angle ; and (4) flat irregular spicules with one or two projecting spines. The following measurements were tiken of length and breadth in millimetres:
(1.) $1 \times 0.6 ; 0.9 \times 0.6 ; 0.6 \times 0.08 ; 0.5 \times 0.3 ; 0.5 \times 0.2$.
(2.) $0.5 \times 0.04 ; 0.36 \times 0.04 ; 0 \% 2 \times 0.04$.
(3.) $0.8 \times 0.13 ; 0.8 \times 0.1 ; 0.6 \times 0.05 ; 0.6 \times 0.01$.
(4.) $15 \times 0.4 ; 1.3 \times 0.45 ; 1.2 \times 0.5 ; 0.9 \times 0.6 ; 0.85 \times 0.4 ; 0.8 \times 0.6$.

Lonality: Andaman Sial 112 fatloms.

CODPARATIYE TABHE ON SDECJES

Speeies.	Appearance ol Colony.	Axis, hranched or not.	Axis, shape ant Colour.	Axis, Texture and Flexibility.	1ridescence or not.
Stenellu johnsom, II right and Studer:	\ldots	Branched, irregularly dichotomons.	...	Older, dense, horny, and calcareous; younger, jorny, and feelly calcareons.	\cdots
Wriglat auc Studer.	\ldots	...	Slightly curved and grooved.	Dense, brittle, calcareous.	Itidescent.
S. doederdini. Wright and studer.	\ldots	$\begin{gathered} \text { Irregularly } \\ \text { branched. } \end{gathered}$	Datk brown colour.	Hard, mittle.	Tridescent.
s.spinosu, Wright and Studer.	Bush shiped.	Irregularly and densely.	Deeply striated, dark brown.	Hard, brittle.	\ldots
Wright and Studer.	...	Irregularly in incomplete pirals.	Brown.	Hard, fibrous, with calcare. ous corpuscles.	...
Thomurella moseloyi, Wright and Sturler.	Twigs in two lirections.	Twigs may developr into branches.	Thin, somewhat flattened and yellow.	Slightly calcareous, flexible.	Surface shining.
T. Lilyculorfi, Studer.	Twigs from three sides of stem.	Pranched.	Oval, with parallel longitudinal furrows, brown.	Horny, calcareous, rigid, lrittle.	Slight golden lustre.
Thourrella liolliberi, Wriglit and studer.	...	Jivancled in three direetions.	Oxal.	(1a)careous, hrittle in lower part, more flexible ahoye.	\ldots

ON STENELLA AND THOUARELLA.

Polyp Slape.	Arrangement ol lolyls.	Spicules of Polyj.	Pre-opercular Spicules.	Opercular spicules.	Spicules of gencral Cumenthyma.
\ldots	In whorls of two.	sicales in three rows.	Four large, forming a lrill.	Eight.	Scale-like, often imbricated.
	In whorls of four.	Seales in four rows.	$\begin{aligned} & \text { Four large } \\ & \text { scales. } \end{aligned}$	prominent, deeply keeled.	Scales irregularly guadrilateral.
Long, narrow.	In whorls of three or four.	Scales in four rows.	Eight scales with spathulate prominence.	Eight in mumber, project, folded back.	scmi-transparent scales, many witl projecting central knob.
Long.	Irregularly, or in whorls of two or four.	s'cales in four rows, plus one pre-opercular row.	Eight with hollow spathulate spines.	Eight in number, each folded on itself, not projecting beyond the pre-opercular.	In older, small overlapping ; in rounger, larger and imbricated.
In lieight 2 mm .	In whorls of three or four.	Scales in four rows, plus pre-opercular row.	Tliree large acutely spined.	\ldots	Oval discs.
Club-shaped, $1.5 \mathrm{~mm} .$	On main stem, in an irregular row. On twiss at first, in spirals up to three, then opposite.	Four transverse rows, four longitudinal rows.	...	Short, spearshaped.	Irregular four or tive-sided calcareous scales which overlap. A lower layer of triangular or irregularly polygonal.
\ldots.	In spirals of three, but apparcontly oppusite.	Six to eight transverse, five longitudinal rows.	Strong projecting spines.	Eight spearshaped, forming a low cone.	Longish and oval, lower edge covererl by upper edge of preced ing.
P'ear-shaped.	In short spirals.	Eight transverse rows, five dorsal and lateral, and two ventral.	With strongly projecting spines.	\cdots	Irregulir, threecornered, or polygonal, or four-celged, or round ed over-lapping imer layes three cornered or pelygonal.

Species.	Appearance of Colony.	Axis, branched or not.	Axis, Shape and Colour.	Axis, Texture and Flexibility.	lridescent or not.
T. antarctica, Valenciemes.	Bottle-brushshaped.	Branched.	Oval and twisted in a spiral, yellow.	lIomy, calcareous, l,rittle.	Golden lustre.
T.utlinis, Wright and Studer:	Bruslı-Iike.	\ldots	Oval twisted in a long spiral, then a second spiral begins, yelluw.	Hard, lrittle, Lut Ilexible near the ti p .	Iridescent and golden Iustre.
$\begin{aligned} & \text { T. ruriubilis } \\ & \text { (type), Wright } \\ & \text { and Studer. } \end{aligned}$	\ldots	Not branched.	Elongated oval, brownishyellow.	Horny, calcified, tirm, brittle below, flexible above.	...
T. verrabilis, var. urevispinuse, Wright and Studer.	\cdots	Twigs branclied.	...	\ldots	\ldots
T. vuriubilis, var. gracilis, Wright and Studer.	Finely ramified.	\ldots	\ldots	Firm, brittle, and calcareous below, beconing homy and flexible above.	\ldots
```Thauarella brueci, Tlomn- *0n alll Ritelice```	$\begin{aligned} & \text { Creamy - white } \\ & \text { co olo } 11 \mathrm{r} \text {; } \\ & \text { luslyy. } \end{aligned}$	Branches arise in there directions, Iwigs frumall silus: irregular.	Cylindrical; tawny brown, withat places rellow ish sheen, honey:yellow in twigs.	Horny and calcarenus, ahmost inflexille, but twigs very tlexilile.	Slight yellowish sheen.
T. moselyyi, Wright and Studer, var. spicietet, 1 .		Hianches arise on the two lateral faces, not strictly alternate.	Cylindrical, with lomyitudimal ritles and grooves.	Llark and tough, with a darker portion in the rentre; only slightly Hexible.	1 ridescent.

OF STENELLA AND TIIOUARELLA-contimued.


# Thouarella moseleyi, Wright and Stuler, var. spicata, n. Plate 11I. figs. 2 and 4. 

Several incomplete specimens, without basal attachment.
The axis is branched, calcarcous in texture, iridescent, cylindrical, and markerl by longitulinal ridges and grooves. It is rery hard and tough, and on heing broken across shows a darker portion in the centre. Its diameter varies from $1-1.5 \mathrm{~mm}$. in the different pieces.

The twigs arise on the two lateral faces, although here and there a twig may he seen with its origin slightly approximated to one of the other surfaces. They nsuatly curve more towards one face than to the other, and this is accentuated lyy the presence of a polychete worm lorlged on one side of the stem. They are arranged in a roughly altermate mamer, hut here and there two on one side alternate with one on the other.

Polyps arise singly and in close proximity on the lateral surfaces of the main stem and branches between the origins of the twigs; on the twigs they arise in pairs on opposite sides. They are stiff and rigid, rising at right angles to the axis, usually 1.5 mm . in height and from $0.6-0.8 \mathrm{~mm}$. in maximum width. They are covered with Hat scale-like spicules, in five transverse and four longitudinal rows. The pre-opercular row of spicules has eight projecting spines which are ruite visille to the naked eye, and project considerably heyond the opereular surface of the polyp. The operculum forms a somewhat high cone.

The general cenenchyma is thin, allowing the axis of the stem, branches, and twigs to shine through. It shows numerons flat scale-like spienles.

The spicules are flat, irregular multi-tuberculate scales, varying considerahly in size aur with slightly convex edges. The following measurements were taken of maximum and minimum diameter in millimetres:

$$
0.6 \times 0.4 ; 0.45 \times 0.28 ; 0.28 \times 0.26 ; 0.14 \times 0.08
$$

Some of the spicules bear a long smooth projecting spine, and their dimensions are :

$$
0.7 \times 0.3 ; 0.6 \times 0.35 ; 0.5 \times 0.3 ; 0.4 \times 0.25 .
$$

The tubereles or warts are arranged in a regular manner round the nudenof the scate, which is always eccentric. The spine projects from a groove, and is very easily letached; it is sometimes lificl.

The following table of comprarison with the typical Thonarelle moseleyi summarises the chief points of difference, on account of which we estahlish a new and very distinct variety :

Thouarelle moseleyi.

1. Twigs alternate.
2. Polyps in short spirals of three. or placed opposite.
3. Twigs not strictly alternate.
4. Polyps in tiros placed almost opporsite.

## Thouarelle moseleyi.

3. Operculum bluntly conical.
4. Axis smooth.
5. Axis flexible.
6. Pre-opercular seales not spinerl.

Var. spicatu, 11.
3. Operculum forms a ligh cone.
4. Axis markedly ridgerl.
5. Axis only slightly flexible.
6. Pre-opercular scales with strong spines, which may be lifid.

Locality: Laccadive Sea; 703 fathoms.
The typical T. moseleyi was recorded from off Kermadec Islands.

Caligorgia flabellum, Ehrenberg.
This well-known species is represented by several large specimens.
We need only note that there is considerable diversity in the closeness of the whorls of polyps to one another, and in the number of polyps in a whorl. We counted $4,5,6$, and 8 .

Locality : Station 333; $6^{\circ} 37^{\prime} \mathrm{N} . ; 79^{\circ} 38_{1}^{3 \prime} \mathrm{E} . ; 401$ fathoms.
Previously recorded from near Mamitius, East Jndian Arehipelago, Japan, East Pacific off Central America.

Caligorgia indica, n. sp.
This species from the Andaman Islands is represented by a fragment of a colony, 112 mm . in length and 20 mm . in breadth. It is closely allied to C. similis, Vershys, and to C. versluysi, Thomson and Henderson.

The axis is iridescent, and marked by a number of longitudinal grooves and ridges. It has a diameter of 1 mm . at its lower end, and gradually dwindles until it becomes thread-like at the tip.

We are greatly indebted to Dr. J. Tersluys for generonsly placing at our disposal the following notes on this species:
"The primnoid in Professor Alcock's collection differs from Primnoce ellisii, von Koch (=Caligorgia verticillata, Pallas ${ }^{1}$ ) in several noteworthy details, as shown in the following table:

Character of Aleock's Species.
a. Dichotomously branched.
b. On the thimer twigs the polyps are arranged in whorls of 2 , less frequently $3 .{ }^{2}$

Characters of Caliyorgia rerticillata, Pallas.
a. Pinnately branched.
b. On the thimner twig's the polyps are arranged in whorls of : 3 , very seldom of $\Omega$; on the thicker manches the whorls mostly contain 4 polyps.
${ }^{1}$ For more particulars see my memuir on the limmoite in the monographs of the Sihoga Expedition. No, xiii. a (1906).-J. Y.
${ }^{2}$ On the thicker branches whorls of three were most frequent.-J. A. T.

Charaeter of Aleock's Species.
c. On a centimetre of the twigs there are 8 to 9 whorls of polyps.
d. 'The length of the contracted polyps is 0.75 mmn . or less.
c. The distance letween the successive

Characters of Caligoryia certicillata, 1'allas.
c. On a centimetre there are only 5 or 6 whorls.
d. The length of the contracted polyps is 1 to $1 \because 5 \mathrm{~mm}$.
c. This distance is 1 to 1.5 mm .
whorls of polyps generally varies from 0.4 to 0.9 mm .

Alcock's species is more delieate, with mueh smaller polyps; the whorls are more numerons. In the details of the polyps there are also some differences. In C. verficillutre the exposed surface of the polyps is covered by four well-developed longitudinal rows of scales, a pair of aboxial and a pair of lateral rows. These last rows are somewhat reduced in Alcock's species, where they are each represented by only three scales, two distal and one basal scale. The inner lateral rows are much reduced in both species.

The new species may also be easily distinguished from all the dichotomonsly hramehed species of Catigorgice hitherto described, viz. C. ventilabram, C. modesta, and $U$. compresse ; it is more delicate, with smaller polyps, and none of these three species has so few polyps in each whorl, even on the thinnest twigs.
'There are, however, two new species in the collection made by the Siboga Expedition maler the direction of Professor Max Weber in the Malay Archipelago, which in their habit, the dimensions of the polyps, and the small number of polyps in each whorl, mach resemble Alcock's species. 'These are deseribed in my monograph on the "Primnoide of the Siboga Expedition" ; in the present note I can only point ont the more important diflerences hetween these species and this new species.

One of them, Caligongia minuta, is distinguished by the much larger and less numerous seales in the polyps; the ahaxial rows consist of only 5 scales each, against 7 in Alcock's species; and of the outer-lateral rows only one distal scale is left, against 3 seales in Alcock's specimen. The opereulum in $C$. minutet is a much lower cone.

The other new species, $C$. simitis, very much resembles Alcock's species; but still it seems to me, so far as 1 can judge from the small material at my disposal of both species, that they are different. The differences are stated in the following table:

## Charaeters of Aleock's Species. Characters of $C$. similis.

a. The propps are arranged in whonls of $a$. The polyps are aranged in whorls of 3 ,
$\because$, hess often of :3. ${ }^{1}$ very rarely 2 , on the thimner twigs ; on the thicker branches the whorls number 4 , perhaps also 5 polyps.

[^3]Characters of Alcock's Species.
b. On 1 centimetre length of a twig there are 8 or 9 whorls of polyps.
c. The length of the contracted polyps is 0.75 mm . or less.
d. The distance between two whorls varies generally between 0.4 and 0.9 mm .
$e$. In the polyps the abaxial rows consist of 7 scales, the outer-lateral rows of 3 scales only ( 2 distal scales and a basal, or perhaps 2 hasals).
$f$. Of the scales of each abaxial row only two are extended over the sides of the polyp; sometimes a third scale also shows it smaller lateral extension.

Characters of $C$. similis.
b. On 1 centimetre there are 7 or 8 whorls.
c. The length of the contracted polyps is somewhat larger ; it varies generally between 0.75 and 0.81 mm ., but sometimes rises to 1 mm .
d. This distance is somewhat less ; it varies between 0.3 and 0.5 mm .
$e$. The same number of seales is found in the abaxial rows, hat the onterlateral rows are reduced to only one distal scale.
f. Uf each abaxial row the 5 proximal scales are extended over the sides of the polyp and replace the missing outer-lateral scales.

The sum of these differences is, I think, of sufficient importance to warrant us in regarding Alcock's species as different from Caligorgia simitis. The two species are, however, very closely allied. The seales in the polyps and the coenenchyma are of the same type.
$C$. indica differs from $C$. versluysi in the smaller number of seales on the polyps. Each abaxial row is formed by 7 scales only, against 10 or 11 in $C$. versluysi, each outer lateral row by 3 seales against 5 . The habit of the two is the same, and it is not impossible that $C$. indica is only a variety of $C$. versluysi." Locality: Andamans; 270-45 fathoms.

## Caligorgia dubia, n. sp.

A single fragment 7.9 ems . in leight and 1.6 cm . in width.
The branches arise in one plane from the opposite sides of the chief axis. The distance between the origins of the branches varies considerably, from 6.5 to 13.5 cms .

The axis is slender ( 1 mm . in diameter at the base, thread-like at the tips of the lomehes), flexible, almost cylindrical, and marked by longitudinal ridges. It is horny in texture, shows concentric layers, and is abundantly impregrated with lime. The colour is yellowish, darker in the angles hetween the chief axis and the branches.

The general conenchyma of the stem and branches is thin and transparent, and shows a layer of flat scale-like spicules, longer than lomed, arranged with their long axis parallel to the length of the branch.

The polyp are arranged in whorls of two or three, and may also oecur singly between the whorls, but in no case are there more than three in a whorl. They are long and slightly club-shapent, and their apices are always tumed in towards the stem or hanch on which they stand. The polyp spicules are flat, irregular scales with many warty tubercles, and some of them have one of their edges toothed. They are arranged in nine transverse and four longitudinal rows. There are two rows on the abaxial surface and tro, not so complete, on the lateral surfaces; the axial surface is free from spicnles. The spicules of the first three transverse abaxial rows have spines on their free elges, and the same is true of those on the first two lateral rows on each side. The operenhm forms a distinct sharp cone, and consists of eight slightly curved spear-shaped spicules.

The spicules of the general cerenenchyma, which form a complete covering for the stem and branches, are long narrow flatish scales with the nuclens eccentric. Their measurements, length and brealth in millimetres, are :

$$
0.85 \times 0.175 ; 0.8 \times 0.1 ; 0.7 \times 0.17 ; 0.6 \times 0.2 ; 0.6 \times 0.1 ; 0.25 \times 0.07 \text {. }
$$

The polyp spicules are broader than the above and more like fish scales. Their measurements, maximum length and brealth in millimetres, are:

$$
0.4 \times 0.2 ; 0.35 \times 0.2 ; 0.3 \times 0.25 ; 0.275 \times 0.175
$$

The spicules of the abaxial and lateral rows, which have spines on their free edges, have the following dimensions : $-0.37 \times 0.3 ; 0.33 \times 0.3 ; 0.3 \times 0.3$. The spearshaped opereular spicules average 0.6 mm . in length and 0.27 mm . in maximm width.

Locality : Station 333 ; $6^{\circ} 31^{\prime}$ N., $79^{\circ} 38^{\prime} 45^{\prime \prime}$ E. 401 fathoms.

Family Mericeidet.
Acanthogorgia aspera, Pourtales ( $=$ A. spinosa, Hiles?).
Paramurice indiea, n. sp.
Acanthomuricea ramosa, n. g. et sp.
spicata, n. sp.
Anthogorgia vervilli, n. sp.
Calicoyorgie imestigatoris, n. g. et sp.
" rubrotincta, n. sp.
Placogorgive intica, n. sp.
,. mientalis, n. sp.
Astrogengia mbra, n. sp.
Acrmphogorgiku bebryenides, von Koch.

```
Acamptogorgia bebrycoides, vou Koch, var. molnsta, u.
 " circium, n. sp.
Acis spinosa, n. sp.
Muricella bengalensis, 11. sp.
```

Acanthogorgia aspera, Pourtales ( = A. spinosa, IIiles ?). Plate II. fig. 2; Plate V. fig. 15.
This species is represented by two beautiful speeimens, 185 mm . and 120 mm . in height.

The colony is branched in one plane, the hranches lieing in some parts altermate, in other parts quite irregular. The polyps are densely crowded on the stem and brauehes, giving each bramch a bottle-hrush appearance. At the base there is a flat and thin dise of attachment. Very light brown is the general colour, but the polyps are almost white. In the larger specimen the axis has a hasal diameter of over 1.5 mm ., and is flattened in the plane of branching from a point a short distance above the base. In the smaller specimen one surface is flatteued and marked by a hroad shallow groove, while the opposite surface is rounded. This flattening is not so marked in the hranches, and some of the terminal branches or twigs are almost cylindrical. The surface of the axis is marked by a large number of discontinuous longitudinal ridges.

The polyps are arranged all over the stem and branches; they are long, up to 6 mm . in lheight, with a basal diameter of about 1.5 mm . They are almost cyliudrical, with a tendency to expand slightly near the oral end. They stand at right angles to the stem and branches, and are firm and rigid.

On the polyp boly the spicules are arranged in eight rows, each showing sharp projecting points formed by the free ends of the spicules. The spicules of each row are arranged in pairs, each pair converging and forming an inverted $V$ with the apex directed towards the mouth of the polyp. The spicules of each $V$ are slightly curved outwards at the lower end, so that they pass over to, aud interlace with, the basal portions of the spicules of the adjacent $V$ on each side. Towards the apex of each row the spieules become slightly smaller, and then the row ends usually in three projecting overlapping spines, one markedly larger and stronger than the other two. Thus the apea of the polyp is sumomled by a munber of points which project a considerable distance beyond the infolded tentaeles.

The spicules on the aboral surface of the infolded tentacles form a flat eightrayed operculum. On each tentacle they are arranged at first longiturlinally in the middle line with spicules on the sides at right angles to those in the midale, then the median spicules fail and the side spicules form $V$ s. whieh become gradually shallower until the spicules lie transversely and alternate with one another.

The cenenchyma is thin, and is densely packed with spicules. The spicules of
the polyps are slemder spindles, straight or curved, and a few slightly flattened forms. All have spiny projections, which are very marked in some of the smallest.

The following measurements were taken of length and breadth in millimetres:

1. General polyp spieules, $1 \times 0.1 ; 0.8 \times 0.09 ; 0.6 \times 0.05 ; 0.35 \times 0.03$.
2. Tentacular spicules, $0.18 \times 0.04 ; 0.14 \times 0.04 ; 0.12 \times 0.04$.
3. Those that project at the apex, $1.6 \times 0.09 ; 1.45 \times 0.1 ; 14 \times 0.12$; $1.3 \times 0.1 ; 12 \times 0.1$.
The spicules of the stem are similar to those of the polyps exeept for their smaller size. Their measurements are :

$$
0.8 \times 0.095 ; 0.8 \times 0.08 ; 0.5 \times 0.06 ; 0.35 \times 0.09 ; 0.3 \times 0.05
$$

Among the spicules, both of the polyp and of the general enenenchyma, there are some more irregular forms, with processes about 0.1 mm . in length, hearing small spines.

We do not think that there is any valid distinction between A. asperca, Pourtales, and A. spinose, Hiles.

Loeality : Station 333; $6^{\circ} 31^{\prime}$ N., $79^{\circ} 98^{\prime} 45^{\prime \prime}$ E. ; 401 fathoms.
Previously recorded from Havana, and A. spinnse (Hiles) from Btanche Bay, New Britain.

Name.	Branching.	Canencliyma.	Verruce.
A. spinosu, lliles.	In two phanes at rieht angles. One terminal poly?.	Thin and fairly	Cylindrical, elongated, somewhat expanded at the summit, placed perpendicularly to the stem, and thickly crowded on all sides.
A. fletbellum, IIcksotn.	Fan-shaped in one plane, with much anastomosis.	Thin and rough, beset with tuberculate warts.	$\ldots$
A. incrmis, Hedlund.	In one plane, amastomosis present.	Of merlium thick ness, finely granular under the lens.	Cylindrical, witlt scarcely visible projecting needles, cight bands on the body of calyx.
A. brevispina, Studer.	Few on one sile, in one plane, flexible.	-	Spicules in eight rows each, consisting of two sets of converging spicules. Eight apical spines not projecting beyond the opereulim.
A. breviflora, Whitelegge.	Few, alternate in one plane.	Extremely thin, axis visible through, few spicules longitudinally armaged.	Somewhat constricted at middle; with spicules arrauged transversely at liase, not distinctly seriate, peripherally at tip, surmonnted at the apex by a series of long needle-lite spicules.

SPECIES OF ACANTHOGORGIA.

Polyps.	Axis.	Spicules.	Colour.	Notes.
Long, with spicules in eight longituclinal rows, arranged en chevron, surrounded at summit by eight bundles of projecting spines, each hundle with two on three ncedles.	Horny, and brown in colour.	1u cenenchyma, mostly ytuadriradiate, but alsn longish spindles, with small spines; in polyps, spindles bent at the lower enc, with small spines.	Dirty white.	Differs from A.muricata in having eight groups instead uf eight single projecting spines.
Small, cylindrical, with slightly projecting spines at the free edge, crowded on most parts of the flabellum, and principally in plane of flabellum.	Horny, with a core of bead-like calcareous bodies in definite chambers; lack in the older parts, brown in younger.	Firmly locked together and fused irregular tuberculate foliaceous clubsand hranched spindles; in anthocodice slightly bent spindles, partly smooth, partly tuberculate, also dagger-shaped forms; also irregular foliaceous spiculesbothin the anthocodize and the cenenchymi.	White.	Most nearly related to A. inermis.
...	Horny, blackbrown; in twigs yellow brown.	Slightly bent warty or spiny spindles, clubs irregularly rounded or branclied at the thick end.	Yellow brown.	Near A. lesw, Wright and Studer.
Cylindrical rising at right angles, arranged in spirals.	Yellow.	Long spiny.	Cunenchyma and polyps black.	$\ldots$
Alternately on the sicles of the branches, at right angles.	Horny, rather brittle, blackishbrown, tijs of branchlets yellowishbrown.	lu crenenchyma straight or curved spicules, with few blunt spines; in polyps the base and sides lave curved spindles, with a few blmt spines at ends, and occasionally tubercles in middle; the deep seated forms are curved or bent, smooth, or nearly so, coronal with long free end shooth, and hasal portion strongly tuleretilate, simple and bent or bifurater.	Yellowish-white.	"This species may be distinguished from other species of the genus by the small polyps and large spicules" (Whitelegge).

COMPARATIVE TABLE OF

Namr.	Brancling.	Crenenchyma.	Verruca.
A. ceylmensis, Thomson and IIenderson.	In one plane, hoth alternate and opposite.	Thin.	Spicules in eight rows en chevron.
1. mediu, Thomsun and Ilender:m.	lrregular, but on the whole alternate, not in one plane.	Of medium thickness, with many projecting spicules.	$\cdots$
A. murimhle, Verrill.	Flabellate, main stem divides not far from base into several principal hranches, which diverge widely at first, and then ascend nearly vertically ; these give oft numerous lateral branches which diverge nearly at right angles, and repeat their own arrangement.	Thin, with a loose granular appearance, but no projecting spincs.	Elongated, cylindrical, or somewhat expanded at the summit, with about eight very long, slender, sharp, projecting and diverging spicnles, the projecting part being usually more than $\frac{2}{3}$ the length of the calyx ; eight longitudinal ridges frequently with projecting ends near the summit.
A. asperi, lourtales.	J"abelliform, few widely divergent branches.	Thin, rough, with projecting points.	Elungated, slightly constricted towards the summit, which is considerably expanded, armed with eight bundles of projecting spicules, eight longitudinal rows, with projecting tips, mostly towards the base and on the rils.
A. crmate, Versill.	Irregularly branched, somewhat in a plane, branches oceasionally miting.	Thin, filled with conspicuous white spicules.	Elongate, often curvel. capitate or clavate, surmounted by eight groups of long divergent sharp spicules, with eight longitudinal ridgen, with an irregular chevroned arrangement.
A. hirta, l'ourtales.	Sub-flabellate, irregularls brinching, branchlets flattened and expanded at tip.	$\ldots$	Lobed, spinous, with spicules horizontal near the base, and then in eight vertical rows.

SPECIES OF ACANTHOGORGIA-continued.

Polyps.	Axis.	Spicules.	Colour.	Notes.
In twos, threes, or in loose spirals.	Horny.	Spindles and quadriradiate forms.	-..	...
Opposite or spirally, butyounger polyps interpolated.	Horny, ehambered, brownishyellow in older, yellow in younger parts.	Spindles with few warts, tri- and quadri-radiate stars and golfclub forms, with long shaft free, and head with rough warts; also a few irregular sex- and quinqueradiate forms.	-	Similar to $A$. ridleyi in mode of brancliing and in the arrangement of the polyps, but like A. muricata, Hiles, in the disposition of the spicules on the calyces.
$\ldots$	Yellowish-brown, strongly striated.	In conenchyma, small, rough, irregnlar, and rather large, very roughly warted, or spinulose fusiform spicules, frequently curved. Incalyces, slender, elongated, warty fusiform spicules, either straight or curved.	Greyish-white.	Closely related to A. urmuter, but differs in having smaller calyces, with longer spicules, and in form of cernenchyma spicules; and also differs from A. aspere in not being hispid.
Alternately on two sides of the stem and branches.	Brownish-yellow.	In cunenchyma, acute fusiform spicules, often Sshaped, similar in polyps.	...	Sturler cloubts if Hedlund's A. asperce should be referred to this species.
...	Yellowish-brown	In canenchyma, white rough curved fusiform spicules.	Ash-grey.	$\ldots$
Distant on stem, more numerous on the branclilets, irregularly alternate, prominent.	...	...	Grey.	...

COMPARATIVE TABLE OF

Name.	Branching.	Conenchyma.	Verruce.
A. verrilli, Studer.	Sparse hranclies arise at riglit angles and then rim parallel to the stem.	Thin.	4-8 mim. Jong, expanded at the summit, which is surrounded by eight bundles of projecting spicules.
A. lonyiflore, Wright and Studer.	Sparsely in one plane, short stem dividing into two principal branches. Apex occupied by a polyp.	Thin, transparent.	With eight longitudinal rows, each formed of two rows of converging spicules, from tips of which eight bundles of spicules project.
A. ridleyi, Wright and Studer.	Branches on three sides, of which two on opposite sides most developed. Tip of twigs occupied by a polyp and thickened.	Thin and transparent.	With eight longitudinal rows, cylindrical, expanded at end, cight projecting bundles, each bundle consisting of at most three spicules.
A. luree, Wright and Studer.	Chictly on two sides in irregular alternating series, forming angles of $70^{\circ}$ to $90^{\circ}$.	Thick, with spicules in longitudinal series.	With eight longitudinal rows, in each two rows of ncedles converging, the angle of convergence becoming hlunter near the tip, with a peripheral ring of projectingspicules. Cylindrical, expanded at end.
A. remosissimc, Wright and Studer.	Strongly and lensely ramified, liranches from three sides; in two opposite directions; in one plane they are stronger; angle of divergence $45^{\circ}$ to $50^{\circ}$; bush-like.	Thin and transparent.	Nut in cight longitudinal rows, eight hundles at month. Cylindrical, expmonded at tip.

SPECILS OF $\Lambda$ CANTIOGORGIA-continuerl.


COMPARATIVE: TABLE OF

Name.	Branching.	Conenelyma.	Verrucie.
A. truncate, Studer.	Branclued in one plare; branches arise at $45^{\circ}$.	Rugose.	('ylindrical, 1-2 mm. in height and $1-1.5$ min. in diameter ; spicules arranged in eight groups.
A. horrita, Studer.	Branched in one plane. Branches distant, from two sides, arising at right angles, then rimning parallel to the main stem.	Bristling with projecting points.	Short, cylindrical or somewhat constricted near the basc. Beneath the projecting spicules around the oral opening there is a collar of transversely placed spicules.
A. muricate, Verrill, var. indica, Thomson and llenderson.	Tery profuse, confined to one plane.	Very thin.	2-5.3 mm. in height, with a basal diameter of 0.9 mm ., and a wilth of $1 \cdot 1-1 \cdot 2 \mathrm{~mm}$. at the crown; there are eight projecting spicules at the free end.
A. australiensis, Hentschel.	Branched more or less in one jlane; lateral twigs at right angles to main stem and larger branches, to which, however, the longer twigs soon become pariallet.	Very thin, surromding six flat longitudinal canals.	Cylindrical to enp. shaped; uppermost peripheral spicules of verruce are in cight groups, each with two projecting spines.
A. schuemmi, D. and 11.	Flabellate, reticulate, much branched.	Thin.	Cytindrical, slightly elongrated, somewhat narrower at the base ; with 5-10 very long projecting spines.

SPECIES OF ACANTHOGORGLA-continued.


Nillue.	Brancling.	Cunenchyma.	Verruce.
1. jolnsmei, Studer.	Dichotomons, in one plane, no anastomosis.	$\cdots$	Bell-shaped, constricted at lase.
A. greyi, Johnson.	Irregular, tendency to grow in one plane.	$\ldots$	Sessile, cylindrical, very suall; spicules arranged longitudinally.
A. hirsute, Ciray.	Bramehes nearly in the same plane.	$\cdots$	Bell-shaped; spicules overlap in indefinite rows.

SPECIES OF ACANTHOGORGIA-continuer.

Polyps.	Axis.	Spicules.	Colour.	Notes.
Seattered on both sides of branches.	Blackish-brown.	(a) Four laznehed lasal rays in one plane, with a long spine projecting berond the comenchyma (spine 0.018 mm. long, processes 0.012 mm . long).   (h) simple bent spiny spindles 0.02 Imm . long.	Pale violet.	$\ldots$
Irregularly seattered. There is a definite opercrulum of eight pairs of spieules.	Pale brown, very slender.	(i) Comenehymafusiform, slightly bent.   (b) Vermea - those at apex-basal portion geniculate, flattened and very rough, often hramehed.	Dark brown.	...
Distant. There is no definite operculum.	$\ldots$	Similar to those of A. grayi? but the large spicules are not branched at the base.	$\cdots$	$\ldots$

## Paramuricea indica, n. sp. Plate III. fig. 3; Plate IX. fig. $\mathfrak{2} 0$.

This species is represented loy a single specimen, which consists of two stalks rising from a tulnular hasal portion. The stalks are simple, except that one gives off a hranch at right angles which terminates in a slight clul)-shaped ending formed by three diverging polyps.

The axis, dark lnown on the outside, with a lighter core, is about 1 mm . in diameter at the base. It is purely horny, showing no trace of effervescence when treated with acid. The verruce arise from three surfaces of the stem, and are so arranged that the verruce of one row alternate with those of the other rows. They are bluntly conical in shape, and have their spicules irregularly arranged.

The polyps are almost completely retracted, hut in several cases the tentacles form a dome-shaped projection albove the month of the calyx. The tentacles are well protected by spicules arranged as a crown with points. There are three to four rows on the crown. The lower portion of the polyps contain ova and embryos.

The single hanch and the tro stems end in blant points round which three divergently projecting polyps are arranged.

The surface of the whole specimeu is rough, with projecting spieules.
The following measurements were taken of the length and breadth of the spicules in millimetres:

1. Spindles, either straight or curved, with prominent rough warts, $0.6 \times 0.1$; $0.5 \times 0.12 ; 0.41 \times 0.12 ; 0.35 \times 0.08 ; 0.3 \times 0.06$.
2. Tri-, quadri-, and sex-radiate forms:

Triradiate, $0.4 \times 0.2 ; 03 \times 0.2 ; 0.25 \times 0.2$.
Quadriradiate, $0.4 \times 0.15 ; 0.4 \times 0.3 ; 0.35 \times 0.17 ; 0.25 \times 0.15$.
Sexradiate, $0.45 \times 0.18 ; 0.3 \times 0.2 ; 0.3 \times 0.12$.
3. Tregular forms, many of which may be regarded as spiudles, with a foliar expansion on one side:
0.6 mm . in length with foliar expansion length by breadth in mm. $0.12 \times 0.12$.
0.5 mm . $\quad, \quad, \quad, \quad 0.16 \times 0.08$.
0.5 mm . ", ", ", $0.14 \times 0.07$.
0.3 mm . ". . ", " $0.14 \times 0.06$.

This species is nearest $P$. aquatorialis, hut the anthocolial armature is much less elahmorate, and the spicules differ in detail.

Locality: Andamans: 265 fathoms.

Acanthomuricea ramosa, n. g. et sp. Plate V. figs. 1, 4, and 8 ; Plate IX. fig. 5.

This new genus is established for two interesting specimens in which the axis is horny, solid in the ohler parts, but hollow and very soft in the younger portions. The colony is branched in one plane, but small twigs may arise at right angles to the plane of hanching. The branching is irregular, but often altermate. The coenenchyma is thin, like rough bark, with imbricating scales. The verrucat occur on all sides of the axis, either closely or at moderate intervals, usually leaving the dorsal surface free in the older portions of the stem and brauches. The tentacular portion of the retracted polyp forms a prominent conical operculum. The verruca are prominent, upright, almost eylindrical, with the spicules arranged in rows (sometimes slightly irregular) ending in eight points. The spicules of the verruca are irregular plates with a projecting spine, irregular discs with divaricate elges, elongated forms with broad bases, and a few irregularly branched rods. Those of the general conenchyma are irregular dises, flat hars, and spindles with a large foliaceous expansion about the middle of one side.

This genus seems to be related to Placogorgiu, but differs from it in the thinness of the crenenchyma, in the size of the verruca, and in the tentacular operculum.

## More detailed Description.

The gemus is represented by a large greyish-black, upright, fan-shaped colony, 27 cms. in height, with a maximmm width of 23 cms .

The base consists of a flat spreading stolon-like portion which surrounds a fragment of Plenrocorallium. Almost at its origin the main stem gives off a hranch at right angles. The branching is in one plane, and for the most part roughly alternate, though this is broken through, either by two branehes alternating with one, or by all approximation to the dichotomous type. At the tip of a branch there arc two or three verruce.

The thin basal portion is remarkable in having single polyps seattered over its surface, and in giving off a small branch from the under surface which lies in the same plane as the main colony, but has its aper directed in the opposite direction.

The axis is horny, 5.75 mm . in diameter near the base. It is solid in the lower part, but soon becomes hollow. At first the central tuhe is of small diameter, but it gradually increases in size till in the younger branches and twigs the walls beeome so thin that a slight touch compresses the tube and puts the walls in eontart with one another. The axis is easily broken, and has its surface, at least in the main stem and branches, marked hy a number of longitudinal striations.

The verruce are prominent, almost cylindrical, at right angles to the surface, about 2.3 mm . in height, with a hasal diameter of 1.5 mm . The wall of the verruca is composed of seale-like spicules armanged in rows and furnished with blunt projecting points. The tips of the rows form eight points encireling the base of the tentacular opereulum.

The anthocodie are not equable of complete retraction; the tentacular part when in rest lies on the top of the remuea and forms a conical operculum. The spicules are alranged in a crown and points. The crown consists of a ring of transverse spindles three deep; each point forms a triangle, the sides of which are formed by two large spicules with the basal ends diverging in golf-club fashion and resting on a spicule shaped like an inverted $U$. In nearly all the points there is a third spienle in close comnection with the sides of the triangle.

The general cuenenclyma is thin and practically composed of large irregular imbricating scales. In the younger parts of the hranches the erenenchyma spicules are somewhat longer and less swale-like.

The spicules of the anthocodia are spindles, straight or eurved, with spiny projections. They vary in leugth from 0.2 to 0.8 mm ., and in width from 0.03 to 0.06 mm .

The spicules of the verrucre are irregularly shaped plates with a projecting spine, irregular dises whose surface is corered liy papillie and whose edges are divided into branched protuberances, elongatel triangles with broad lases which are divided into several branched prominences, and a few irregularly branched rods. The following measurments were taken of length and breadth in millimetres:

1. Plates, $0.95 \times 0.6 ; 0.8 \times 0.5 ; 0.75 \times 0.4 ; 0.7 \times 0.3$.
2. Dises, $0.7 \times 0.6 ; 0.5 \times 0.35 ; 0.5 \times 0.3$.
3. Elongated triangles, $0.7 \times 0.5 ; 0.6 \times 0.25 ; 0.5 \times 0.3$.
4. Rolls, $0.6 \times 0.17 ; 0.5 \times 0.11$.

The spicules of the general cenenchyma are flat bars, irregular dises, and spindles with a large foliar expansion on one side. All are covered by rough warty papille. Their measurements, taken as above, are as follows:

1. Flat bars, $0.8 \times 0.25 ; 0.7 \times 0.2 ; 0.6 \times 0.2 ; 0.4 \times 0.1$.
2. ITregular dises, $0.6 \times 0.4 ; 0.4 \times 0.26 ; 0.4 \times 0.2 ; 0.3 \times 0.25$.
3. Spindles, $0.7 \times 0.12$ across the tum, and 0.3 across the foliar expansion.

$$
\begin{array}{llllll}
0.6 \times 0.1 & " & \because & 0.25 & " & " \\
0.4 \times 0.1 & " & , & 0.2 & " & "
\end{array}
$$

Locality: Station 284 ; $7^{\circ} 55^{\prime} \mathrm{N} ., 81^{\circ} 47^{\prime} \mathrm{E} . ; 506$ fathoms.

Acanthomuricea spicata, n. sp. Plate 1X. fig. 12.
A small complete colony 55 mm . in height, greyish-white in colour.
The branching is mainly in one plane, but small twigs with two or three polyps arise at right angles to this plane chiefly from the main stem. The branches arise alternately at wide intervals. There is a flat spreading basal attachment.

The axis is homy, cylindrical, and marked by longitudinal stria. Its basal diameter is 1 mm .

The verruce are crowded, and occur all over the stem and branches without any obvious arrangement. On one branch they leave a bare strip along one side, aud bare patches are seen here and there on the stem. There are clusters of verrucre at the origins of small brauches, and there are always two divergent venuce at the tips. The polyps are long, $2 \cdot 7 \mathrm{~mm}$. in height even in the partially retracted condition. On the lofty conical anthocodiz the spicules are arranged in a crown with long points. The crown consists of four to five rows of small transrerse spicules ; each point las three spicnles, two couverging and one in close connection. On the aboral surface of the tentacles there is a namow band of longitudinally arranged spicules, and there are smaller forms closely packed on the sides and directed towards the bases of the pinnules.

The verruca are from 1.8 to $2 \cdot 2 \mathrm{~mm}$. in height and formed of broad spicules, the upper ends of which project slightly and produce a rugged surface.

The rough bark-like comenchyma is formed of one layer of rough scales-like ctenoid fish scales-which are dovetailed into one another.
'The spicules of the verrucae and of the anthocodire consist of plates with a spine, irregular dises, elongated triangles with broad bases, rods, spindles, and golftelub, forms. All are corered by warty protuberances. The following measurements were taken of length and breadth in millimetres:

1. Plates, $1.0 \times 0.45 ; 0.9 \times 0.4$.
2. Discs, $0.85 \times 0.55 ; 0.7 \times 0.35$.
3. Triangles, $0.9 \times 0.4 ; 0.8 \times 0.3$.
4. Rods, $0.6 \times 0.1 ; 0.5 \times 0.06 ; 0.3 \times 0.05$.
5. Spindles, $0.9 \times 0.09 ; 0.4 \times 0.06$.
6. (iolf-club, forms, $1.1 \times 0.12 ; 0.9 \times 0.1$.

The spicules of the conenchyma are spindles with large expansions (sometimes foliar) on one side, irregular dises, and somewhat flattence bars. Their measurements are:

1. Spindles, $1.0 \times 02 ; 0.8 \times 0.2$.

Foliar expansion of spimdles, $0.4 \times 0.12 ; 0.2 \times 0.23$.
2. Disces, $0.6 \times 0.4 ; 0.6 \times 0.35 ; 0.4 \times 0.4$.
3. Bars, $0.5 \times 0.19 ; 0.45 \times 0.175$.

They are all covered lay very rongl warty protulerances.
Locality : Station : 333 ; $6^{\circ} 31^{\prime} \mathrm{N}$. $79^{\circ} 38^{\prime}+5^{\prime \prime} \mathrm{E} . ; 401$ fathoms.

## Anthogorgia verrilli, n. sp.

A complete whitish colony, 140 mm . high and 30 mm . broad, attached by a flat expansion to a small fragment of rock.

A slightly sinuous main stem gives off manches irregularly in one plane. The first hanch arises at a distance of 70 mm . from the base, and a second alternating with it 5 mm . higher. For 30 mm . the stem is lare, and then come four branches, irregularly disposed, two on each side. After another 15 mm . of bare stem there are other tivo alternate luanches. The lranches arise at angles varying from $30^{\circ}-90^{\circ}$. Some of the primary branches bear secondaries.

The axis is hown at the base, golden yellow in the branches. Its texture is very soft.

The vernce are few and scatteren. A typical cxample is 2.25 mm . high, 1 mm . in diameter. It consists of a cylindrical lrody on which the spicules are irregularly disposed. The body is surmounted ly an overlapling dome-like operculum, consisting of crown and points. The crown spicnles are arranged in two (or three) transverse rows; the sharp points consist of eight pairs of spicules which conserge so as to enclose very small apieal angles, sometimes with a smaller spicule hetween them.

The polyps are completely retractile within the verncex, the tentacles being infolded. On the aboral surface of the tentacles the spicules are arranged in two converging longitudinal rows.

The cenenchyma is fairly thick, with lamge transparent spicules irregularly arranged, and in some cases visible to the naked eye.

The spicules are straight or eurved spindles ilensely covered with warts, blunt or tapering at the ends. The following measurements were taken of length and breadth in millimetres:

Crenenchyma spicules, $1.8 \times 0.175 ; 1.5 \times 0.2 ; 1.3 \times 0.15$.
Tentacle spicules, $0.2 \times 0.02 ; 0.175 \times 0.015 ; 0.15 \times 0.02$.
Verrill's diagnosis of the genus. Authogmergice so far as it is known to us, is somewhat rague. It rearts as follows:
"Colony branchech with slender elongater branches: polyp calyees strongly projecten, of a tubular form, with an eightrayed operenlum consisting of a thin ectoxlem in which long spintles are embelded at varions angles. Chenenchyma thin, with large warty spindles."

As it seems possible to include our specimen in the genus Anthogorgia we have done so, rather than add to the already long list.

As Studer's Anthogorgia japonica has only a tentacular opercuhmm, we do not think that it should have been referred to Verrill's genus.

Locality: Andamans; 270-45 fathoms.

Calicogorgia investigatoris, 1. g. et sp. Plate IX. fig. 10.
It is not without much hesitation that we have establisher this new gemus. The specimens on which it is based are difficult to deal with, and they seem to belong to two species. In the form of the calyces and in the nature of the spicules they approach Anthogorgic, somewhat vaguely defined by Verrill; but in the arrangement of the spicules on the verruce and in the nature of the operculum they are quite distinct. In some respects they suggest Muricella, but they are separated by the nature of the spicules and the size of the polyps. We have therefore referred them to a new genus, Calicogorgia, probably related to Anthogorgia; the principal differences between the two genera are stated in the following table:

Anthogorgia, Verrill.
Verruce arranged in spirals.
Operculum composed of spicules embedded at various angles.
Spicules on the verrucæ irregularly arranged.
Operculum may be inside the margin of the calyx.

Calicogorgia, n. g.
Verrucæ lateral, with occasionally one or two ou the other surfaces.
Opercular spicules distinctly arranged in a crown and points.
Spicules on the rerruce arranged in eight bauds, each of two rows.
Operculum forms a dome on the tip of the calys.

The following diagnosis of Calicogorgia may be given:
Colony hranched in one plane, with polyps arranged principally on the latcral surfaces of the branches. Branching irregular, but approximately alternate. Verrucæ prominent with spicules in eight bands and with a toothed margin. Operculum a prominent cone, consisting of a crown and points. Spicules of the cenenchyma and of the verrucæ are warty spindles either straight or curved.

## More detailed description of C. investigatoris.

A greyish-white colony, with a faint tinge of pink, 97 mm . in height and orer 100 mm . in width. A specimen in the littoral collection is 235 mm . in height, 205 in width, with an axis 3.5 mm . in diameter near the base.

The colony is branched in one plane. At a distance of 14 mm . from the base, the main stem divides into two principal branches which give rise to the secondary branches and twigs, the secondaries arising in a roughly alternate manncr. The verruce are arranged on the younger branches in a single linear series on the two lateral edges, but here and there, especially on the older branches, they are present
on the other two smfaces. The tips of the twigs and lnanches are occupied hy two divergent rerruce with a small interval between them. 'There is a Hat spreading basal attachment.

The axis is altogether horny, dark brown in colour, hollow in the younger parts. It is marked superficially by a peculiar network with pits in the meshes.

The polyps are loug, 4 mm . in height, even in a somewhat retracted condition. Ora are abundant, and are arranged in a loose necklace on the mesenteric hands. The non-retractile portions of the polyps are wider than the apices of the vermase, and stand ont like domes. The spicules on the antlocorliee are arranged in a crown and points; the crown consists of $3-5$ (usually 4) rows of slightly curved warty spindles; each point is triangular in form, and cousists of one basal spicule and three pairs of converging spicules, of which the two outer pairs reach to about the same level. At the aper of the triangle there are some minnte spicules.

On the aboral surface of the tentacles there is a band of longitudinally aranged small spindles, with a few arranged transversely.

The verruce are conical in shape with a broad base, and are slightly flattenct in the plane of branching. The spicules are arranged in eight bands, each of which consists of two rows of converging spicules. The points of the bands project a little at the top of the verruca. The verruce vary in leugth from $1.9-3 \mathrm{~mm}$., and have a basal diameter of slightly over 2 mm .

The general conenchyma is thin, and allows the dark brown axis to shine faintly through the coating of long spindles.

The spicules of the polyps and verruce are spindles, straight or slightly curved, covered by warty protuberances. Several of the smaller forms have sharper spinelike processes. The following measurements were taken of length and breadth in millimetres:

$$
1.4 \times 0.18 ; 1.2 \times 0.22 ; 0.7 \times 0.15 ; 0.4 \times 0.03 ; 0.16 \times 0.04
$$

The spicules of the cencuchyma are shorter and thicker warty spindles. Their dimensions are:
$0.9 \times 0.16 ; 0.8 \times 0.12 ; 0.26 \times 0.06 ; 0.16 \times 0.05$.
Locality: Station 246 ; $11^{\circ} 14^{\prime} 30^{\prime \prime}$ N., $74^{\circ} 57^{\prime} 15^{\prime \prime}$ E. ; 68-148 fathoms.

Calicogorgia rubrotincta, 11. sp. Plate 1X. fig. 9.
This species is represented by two eomplete reddish colonies, 139 and 96 mm . in height, 88 and 64 mm . in maximum breadth.

The main stem rises from a thattened basal portion. The axis is dark brown, rylindrical, with a diameter of fully 1 mm . It shows no effervescence when treated with acid, and is formed of layers of dark brown horny fibres with a core of a
lighter colour. Towards the tip of the main stem and of the branches it becomes very Hexible and threarl-like.

The stem, after giving off a branch, diviles into two prineipal portions, one of which predominates. The secondary branches arise from all siles of the main branch, thus giving a somewhat bush-like appearance to the colony.

The verruce are prominent hlunt cones, and arise perpendicularly. They are arranged alternately on the lateral faces of the stem and branches; but here and there this arrangement is disturbed by the occurrence of a few on one of the other faces.

The spicules in the verruca project slightly. On the tentacles there are colourless spindles arranged longitudinally, and there is a basal collaret formed of one or two rows placed transversely.

The spicules of the general crenenchyma are of two types.

1. There are large spindles, either straight or curved, covered with rough warts. They vary considerably in size, and may be simple or forked at one ent. Their dimensions, length by breadth in millimetres, are :
$3.4 \times 0.55 ; 2 \times 0.33 ; 1.22 \times 0.3 ; 0.9 \times 0.175$.
They are dark red, light pink, or colourless.
2. There are smaller spincles, either straight or curved, with fewer and simpler warts. These are usually colourless, but may be pink or light red. They vary in length from $0.2-0.5 \mathrm{~mm}$. and in breadth from $0.03-0.1 \mathrm{~mm}$.
'The two sets of spicules shade into one another', and intermediate stages are not infrequent.

Locality : Bay of Bengal ; 88 fathoms.

Placogorgia indica, n. sp.
An incomplete specimen of a light brown colour, 120 mm . in height.
The branching is on the whole in one plane, but a stump is seen near the lower end of the stem which rises at right angles to the plane of branching. The branches are irregular, five rising from one side and three from the other. The larger branches give off smaller branches, repeating the same arrangement. The basal portion is wanting.

The axis is horny, dark brown in colour, with a lighter core which exhihits no sign of efferveseence when treated with acid. It is somewhat oval in section, and has its surface marked by discontinnons longitudinal ridges. In the younger portions it is light sellow and soft.

The veruce are arranged on three sides of the stem and hranches, leaving' one surface entirely free throughout the whole length. They are short and truncate (about 0.5 mm . in height), and have a number of projecting points round the apex.

In the wall of the vernca the spienles are arranged longitudinally, and many have a broad end formed of two diverging processes.

In the anthocodie the spicules are arranged in a crown and points. The crown consists of four rows of spicules, the triangular points consist of two converging spicules, sometimes with one in between, with the apices directed towards the base of the tentacles.

The spicules of the polyps and verruce are (1) simple spindles, straight or curved ; (2) spindles with a foliar expansion on one side; and (3) spindles or cluls with a branehed foliar expansion at one end.

They are all covered by rough warty protuberances. The following measurements were taken of length and breadth in millimetres:

1. Spindles, $1.2 \times 0.2 ; 1.0 \times 0.2 ; 0.8 \times 0.12 ; 0.4 \times 0.09 ; 0.4 \times 0.05$.
2. Spindles with foliar expansion on the sides, $0.9 \times 0.2$, with foliar expansion $0.2 \times 0.2 ; 0.7 \times 0.13$, with foliar expansion $0.2 \times 0.12 ; 0.5 \times 0.12$, with foliar expansion $0 \cdot 2 \times 0.2$.
3. Spindles or cluls, $1.0 \times 0.3 ; 0.8 \times 0.4 ; 0.5 \times 0.3 ; 0.4 \times 0.36$ in maximum diameter.
The spicules of the stem are spindles either curved or straight, with many rough warts, and often divided at the ends. Their dimensions are :

$$
1.1 \times 0.15 ; 0.7 \times 0.15 ; 0.5 \times 0.1 ; 0.4 \times 0.04
$$

Locality: Audamans; $270-45$ fathoms.

Placogorgia orientalis, n. sp.
An incomplete specimen, $8: 3 \mathrm{~mm}$. in height. There is a slightly conical hasal attachment, from which the main axis arises. The branches lie in one plane, and arise irregularly, in some parts altermate, in other parts not. The axis is horny, oval in section, and dark hown in colour, with a lighter core in the younger branches.

The verruce are armod in a linear series, on each lateral elge of the stem aur hranches, those of the one series alternating with those of the other. There are always two at the tip of a twig. The anthocodie can lee retracted within the vernca margin. The anthocodial spicules are arranged in a crown and points; the narrow crown consists of four transverse rows; each triangular point consists of two spicules diverging slightly towards their base and of one or two others alongside of them.

The vennce are short and conical, almost alternate, 1 min. in height, slightly trmacated at the tip. Their wall is formed of scale-like spicules, with those in the uper row slightly more spindle-shaped. They show considerable diversity as regarls the size and shape of the spicules, but these are ahways similar to those of the general crenenchyma at the same place. They can close in so as ahmost to hide the completely retracted anthocodize.

The general cenenchyma is thin, and is practically composed of imlnicating scale-like spicules. On some parts of the stem and banches they are more spindleshaped. In most parts the axis shines through the crenenchyma, bont towards the tips of the branches this transparency diminishes and finally disappears.

The spienles are oval scales, spindles either thick or slender, irregular scales, very irregularly branched spindles, and elub-shaped forms with much branched folia.

This species differs from $P^{\prime}$. attantica in having more prominent and less crowded verruce, and also in the details of the spiculation.

Locality : Andamans; 270-45 fathoms.

Astrogorgia rubra, 11. sp. Plate V. fig. 10.
A portion of a reddish colony, 65 mm . in height. It consists of a main axis, from which two branches arise. The larger branch arises at a distance of 30 mm . from the base, is 50 mm . in length, and bears a secondary branch.

The axis is horny, spirally twisted, chambered, and brownish in colour, with a white core.

The polyps are completely retractile within dome-shaped verrnea. On the smaller branches the verrucr are disposed in a regularly alternate manner; on the larger branches they are almost opposite, and the spiral twisting of the axis makes it appear as if the verruce occmred on all the four sides. The bare part of the stem on each side is ocenpied by a longitudinal groove, spirally twisted.

The verrnce are prominent and dome-shaped when the polyps are completely retracted, but troncated cones when the polyps are partially retracted. The apical margin of the verruea is marked by eight points, and there are eight opercular parts, each composed of a few large spicules.

The conenchyma is fairly thick, and has a granular appearance due to the arrangement of the spicules. They are all of a pink colour, somewhat diverse in shape, and arranged in two layers. The inner layer is composed of (1) long thin warty spindles disposed longitudinally, and varying in length from $0.3-0.4 \mathrm{~mm}$., and in width from $0.015-0.002 \mathrm{~mm}$. ; and (2) of short, thick, slightly warty blunt spindles, from 0.2 mm . to 0.25 mm . in leugth, and from $0.0 \pm \mathrm{mm}$. to 0.05 mm . in width.

The onter layer is composed of (1) small warty chnls, on an average 0.08 mm . in length by 0.93 mm . in width; and (2) irregular double clubs placed perpendicularly to the surface, about 0.08 mm . in length by 0.04 mm . in width.

On the tentacles there are longitudinal rows of short, thin, slightly warty spindles, which vary in length from $0.09-0.1 \mathrm{~mm}$, and in width from $0.008-0.01 \mathrm{~mm}$.

Locality : Station $218 ; 6^{\circ} 55^{\prime} 6^{\prime \prime}$ N., $72^{\prime \prime} 55^{\prime}$ E. ; 210 fathoms.

Acamptogorgia bebrycoides, von Koch. Plate VI. figs. 4 and 5.
[ = Muricea bebrycoides, von Kach (1887), p. 52.]
The colony is branched in one plane, with frequent anastomosis. There is a slightly conical lasal attachment, with a flat, spreading margin. The main stem divides into two principal braches at a point 4.5 mm . from the base, and these give off lumehes from the two opposite sides in a very irregular manner. Between the origins of the larger secondaries smaller twigs or branches arise which do not msually divide, but only bear polyps. The branching is continued till branches of the fiftlo order are reached.

The axis is horny, and somewhat oval in section.
The polyps are arranged irregulady, chiefly on three sides, most abundantly on the lateral surfaces. The dufolded tentacles form a fairly high spienlate operculmm which rests on the top of the verrnca. The anthocodial spicules are arranged in a crown and points; the crown consists of $2-3$ rows of transverse spicules; the points have two pairs of converging spicules at the base, and from the tip of these several run longitudinally upwards.

The verruce are high, almost cylindrical, slightly smaller in diameter at the tip. They we formed of spienles identical with those of the general conenehyma, and have a height of 1.75 mm .
'The general cenenchyma is fairly thick, and has a peenliar appearance, due to the projecting globular-like ends of the spieules.

The spicules are of three types: (1) warty spindles, either straight or curved; (2) irregular branched spindles, with large flat foliar expansions, somewhat resembling the "Blattkenlen" of I'lexcura; and (3) a few irregnlar quadriradiate forms. The following measurements were taken of length and breath in millimetres:

Spindles, $0.5 \times 0.06 ; 0.4 \times 0.06 ; 0.2 \times 0.02$.
Irregular forms, $0.25 \times 0.2 ; 0.2 \times 0.175 ; 0.12 \times 0.11$.
The foliar expansions are very irregular, appearing in some cases to be the expanded branches of the main spindle, in other cases consisting of several branches fused together: They may be nearly smooth at the edges, or produced into a number of spines. The last type presents a very peeuliar appearance, with rought tubereles on the simple branches and stem, with warty protuberances and irregular ritlyes on the foliar expausions.

Locality : Station $246 ; 11^{\circ} 14^{\prime} 13^{\prime \prime} \mathrm{N} ., 74^{\circ} 57^{\prime} 15^{\prime \prime} \mathrm{E} . ; 68-148$ fathoms.
Previously recorded from the Mediterranean and the Azores.

Acamptogorgia bebrycoides, von Koch, var. robusta, n. Plate III. figs. 7 and 8.
The colony is hramehed in one plane, most of the branches being given off at one side. The tips of the twigs are somewhat club-shaped, and occupied by three polyps. The general conenchyma is rough in appearance. There is no trace of a basal attachment.

The axis is horny, yellowish in colour, and marked by a number of longitudinal strie. The centre is composed of chambers separated from one another loy transverse walls, and containing a whitish substance which gives little or no trace of effervescence when treated with acid. The cavity is not quite central, but lies sometimes nearer one side, sometimes nearer the other.

The polyps occur all over the surface of the main stem or branch. The verruce are almost cylindrical, but somewhat squat, 1.5 mm . in height, with a basal diameter of $1: 3-1 \% \mathrm{~mm}$. A number of spines project round the apex.

The retracted anthocodie bear an almost hidden low conical eight-rayed opercuhm, which is formed by the infolded tentacles. The spicules on the anthocodie are arranged in a crown and points; the crown consists of $2-3$ transverse rows; the points have their spicules en chewon, with a number of short, curved spicules at the base of each triangle.

The coenenchyma is thick, and has an arenaceons appearance.
The spicules of the anthocodie are spindles, straight or curved, and eovered by warty projections. Several are thickened at one end, and present a clubshaped appearance. The following measurements were taken of length and breadth in millimetres:
$0.6 \times 0.1 ; 0.45 \times 0.04 ; 0.2 \times 0.03 ; 0.15 \times 0.02$.
The spicules of the general coenenchyma and of the verruce are (1) spindles, straight or eurved, with warty projections, or with large, thorn-like projections covered ly warts; (2) incipient quadriradiate forms; and (3) irregular forms, with two or three rays at one end. Their dimensions, taken as above, are :

1. Spindles, $0.6 \times 0.046 ; 0.5 \times 0.04 ; 0.45 \times 0.04$.
2. Quadriradiate forms, $0.4 \times 0.25 ; 0.3 \times 0.2$.
3. Irregular forms, $0.4 \times 0.2 ; 0.3 \times 0.2$.

The last kiud of spicule is extremely irregular ; some seem to be ahnost flat, with large processes extending from the edges; others seem to be plates, with spines projecting from them.

Locality : Station $333 ; 6^{\circ} 31^{\prime}$ N., $79^{\circ} 38^{\prime} 45^{\prime \prime}$ E. ; 401 fathoms.

COMPARATIVE TABLE OF

Name.	Branching.	Conenchyma.	Verrnce.	Polyps.
diramitogoryict fruticosit, dermanos.	Tree-like, in varions planes, angles $40^{-}$60'. Two termimal [m] 1 les.	Fairly thick, very rougl, with spicnlar wats, large roush spicules, vers colserent.	Cylindrical or wartlike, spirally arranged, very thickly distriluterl, sometimes in groups of three to five.	Small, 'ruite retractile, mouth circular with a frieze of parallel spines sloping in wiver.
A. acanthostoma, Ciemanos.	Few branclies, treelike, in one plane, stem and banches of almost the same thickness, eylimdrical, brancli angle $60^{\circ}-85^{\circ}$, twig angle $58^{\circ}-70^{\circ}$.	Thin.	Cylindricalortrumcate, conical, spirally armaged, witly eight spines projecting very much at the aperture.	White, quite retractile, with high conical onerculumof sixteen spicules in pairs on the tentacles, each like a longlout; alsu small spindles, rods, etc., on the tentacles.
A. horrille, Llickson.	Not in one plane, nearly at right angles, alparently dichotomous.	Thin, and bristling with spines.	Not prominent, hut surrounded by a crown of spines.	...
A. Auberculutu, Hiles.	Few branches in one plane. Two terminal laterally placed polyps.	Thin, rough, "lumpy," owing to projecting foliar expransions of the spienles.	Low, cylindrical.	Closely placed on three sides of the stem and hranches leaving the back free; with low cunical opereulum.
A. 'pinost, Itiles.	Pranches arise at angles of from $60^{\circ}-$ 90 . Two opmosite polypsat tips.	Fairly thick, and very rough.	Cylindrical.	Chiefly on the sides of the branches at intervals of 2 mm. ; witlı low conical operculum.
A. cobusculde, (irizy Ms. (Wright and Studer').	Branched in one plane, brancles thickened at the ends and forming an angle of $45^{\circ}-50^{\circ}$ with the stem.	Rather thick and rough.	In shape cylindrical orbluntly conical.	In spirals of three at intervals of $1-1 \%$ mm., lont elosely packed at apices; operculum forms a low cone.
A. ctlernens, Wright and stuler.	Slightly branched from two opprosite sides, angle of branching $70^{\circ}-80^{\circ}$, terminal bianches thickened towards the apex.	Thick and rongh,	Bhme, conical.	Sparsely seattered on the stem, more thickly on the larimehes, erowded at apices; operculum low and conical.

## SPECIES OF ACAMPTOGORGIA.

Axis.	Spicules.	Colonr.	Notes.
Horny, yellow brown to yellow, glistening, longitudinal strix, rigid to Hexible.	Irregular warty plates or spindles with long vertical process, digitate in verrucce and larger ; the warts and tubercles are always gr'auular.	Deep red.	With consideral,le resemblance to Acom ptoyoryia (Murices) bebrycoides, von Koch.
Rigid, homy, yellow, with white core, quite translncent, chambered, rigid except in twigs.	A basal tuberculate piece or plate parallel to the surface, with a vertical tuberculate process; also small irregular spindles, some almost double; verruca spicules have a spindle-base transversely disposed and a vertical projecting shaft. The tubercles are never granular.	Whitislitogrey:	Verruce very like teasel heads.
Horny, black or brown, with core divided into chambers by rettical partitions.	'l'ripods with rongh tubercles on legs and smooth projecting spines; in calyces two limbs to each spicule, in conenchyma three, four also found ; the limbs may be fuliaceous and so interlock ; also slightly bent tuberculate spindles.		$\ldots$
Homy, brown in older parts, white at the apices.	Spindles slightly bent, with spiny warts along one side, and, on the convex side at one end or about the middle, complex foliar prominences. In collaret, curved spindles with few spines; in operculum, that spiny spindles arranged in eight groups of three.	White.	Similar to A. fruticosa, Germanos, but polyps larger, and quite distinct in colour.
Horny, brown, with the central core divided into chambers.	In polyps, three-rayed with foliaceous expansions from two of the three rays; the third a spike standing perpendicularly to the others. In conenchyma, bent spindles with short branched expansions on the convex side, and also smaller forms of the polyp spicules.	Light brown.	$\ldots$
Horay, brown, not longitudinally striated, slightly flattened on the stem, tlexible in branches and soft.	In crenenchyma, bent sliny papilliform spindles, frequently with short foliar expansions. In calyces, threc-rayed stars; in collaret, roughened spindles truncated at one end.	Stem brown, oral region of bolyp with violet tint.	$\ldots$
Horny, fcebly flexible. yellowish-brown.	In connencliyma, curved spicules, frequently with fuliar brominences. In calyces, triradiate with third ray shortened ind with 2 bifoliar appendage with dentate margins. In collaret, long-curved spicules with few spines. In operculum, tlat, spiny, and armed at one end with smooth projections.	Whitish.	$\ldots$


Name.	lranching.	Conenchyma.	Verruce.	Poolys.
Actomptoyoryiue utrue, Thomson and Henderson.	Comfineal to one plane; branches arise at right angles, lat bend upwards and run roughly parallel to the main stem.		Stand perpendernlady at intervals ol abont 2 mm . three or four occur at tips of branehes, but none terminal.	Restricted to the lateral edges of stem and branches, but here and there on back and front.
A. betrycoides, $(1$. von Kioch.	Branched in one plane, with freguent anastomosis.	F゙airly thick; globular-like ends of spicules project.	High, almost cylindrical.	Chietly on three sides, most abundant on lateral surfaces; operculum fairly high, spicules arranged in crown and points.
A bebrycoider, $G$. von Koel, var. robusta, n.	Branched in one plane: branclies mostly arise lrom one side.	Rongh; thick.	Almost cylimdical, but somewhat squat ; a number of sjines project around the apex.	Occur all over the surface ; operculum low, conical, almost hidden.
A. circium, 11. sp.	Irresular ; branches arise from two or three sides; there may lie aboundant anastomosis.	Rough, thorny, bristling with projecting spines.	Prominent, 3 mm . in height, with a basal diameter of 2 mm .	Arise irregularly from all sides; operculum high, conical, cruwn consists of four rows, and there are two converging spicules in each proint.
A. spinose, Hiles. var. ceylonensis, Thomson and Henderson.	Profusely brancher in one plane ; an 2 . tomosis common.	Thin, and very rongh in appearance under the leus.	Low, 08 mm . in height, with a lasial diameter of 1.6 mm .	On three sides of the axis; operculnm conical.
A. gracilis, Thomson.	- ${ }^{\text {- }}$	Rough, with shar" projecting points.	Stand perpendicularly to is height of abont 1 mm . At top there is a ring of spicules in two rows.	May oceur on all sides, hut are mostly lateral, sometimes oprosite, sometimes alternate, and branch ends in a pair; operenlar covering consists of eight pairs of curved foliaceous spindles.
A. rubru, Thomson.	Branched in one plane; twigs arise almost at right angles.	Thin, and very prickly.	Small, and arise at right angles to the axis.	Altermate or sul)opposite ; two occur side by side at the end of a branch.

## SPECIES OF ACAMPTOGORGTA.

Axis.	Spicules.	Colour.	Notes.
Horny, almost black at base, but light brown in younger branches.	$\ldots$	Black.	...
Hurny, oval in section.	(1) Wrarty spindles, straight or curved ; (2) irregular branclsed spindles, with large tlat foliar expansions; (3) irregular quadriraliate forms.		-
Horny, yellowish, marked ly a number of longitudinal strixe ; chambered.	(1) Spindles ; (2) quadriradiate types ; (3) irregular forms.		
Yellow, darker in older parts ; chamhered by rertical partitions; ridged -spirally un main stem and branches, longitudinally on secondary branches.	(a) Cenenchyma; (1) spindles straight or curved ; (2) curved spindles, with it foliaceous expansion alout the middle of the convex side ; (3) U'-shaped and irregular forms ; (b) polyps-spindles and chuls with divaricate folia, covered by spines Which stand either perpendicularly or are inclined to the surface of the spicule.		Near A. horrida, Hickson, but differs from it in the size of the polyps and in the size of the spicules.
Oval in section in older parts, cylindrical in younger portions.	(1) Triradiate, with large irregular processes in the angles which often fuse, thus leaving plate-like portions with perforations; (2) modified triradiate forms; (3) spindles and cluh-shaped half-spindles, curved or strainht, eithre with very rough projections or fairly smcoth.	Dark near the luase, but gradually liecomes lighter' in the younger parts.	...
Horny, brown at base, yellow in twigs; chambered in some places.	(a) Curved warty spindles, with a bidentate or otherwise toothed foliaceons part from the middle of the curve ; (b) elubs with irregularly expanded divaricate ends; ( $r$ ) small irregularly stellate forms; (d) forms with four or more rays.	Pinkish-red, with white papilla-like verruce.	$\ldots$
Thin, yellowish.	(a) Straight warty spindles; (b) marrow curved spindles, smooth terminally, warty ahout the middle; (c) large tirradiate forms, very irregular ; (d) smaller and often simpler triradiate forms; (e) small, very warty spindles, with a ioliaceons expansion about the middle.	Deep crimson.	

Acamptogorgia circium, 11. sp. Plate V. fig. 3; Plate IX. fig. 1.
Two specimens, 16 cms. and 20 cms. in length. There are flat, spreading latial attachments. The braching is very irregular. In one specimen the principal branches are confined to one plane, and the secondary lranches are either in that plane, or arise at right angles to it. Of the secondary branches, those that arise on the track of the principal branches curl romm, and come to lie either in the plane of the primary branches, or again at an angle to it, so that the branches on a whole are arranged in three directions. There is also abundant amastomosis. In the other specimen the branching is even more itregular, the secondary branches coming off from three sides; but there is no trace of anastomosis.

The horny axis is yellow in colour, darker in the older parts and lighter in the younger parts, and as far as examined shows no trace of lime. The rore is divided into a series of chamhers by vertical partitions, a structure nstally well seen in this genus. The surface of the axis in the main stem and branches is marked hy a large mmber of spirally arranged ridges; in the secondary branches the ridges run longitmlinally.

The verruce are prominent, arising irregularly from all sides of the stem and hramehes, and each is surounderl by a crown of spines. They reach a height of 3 mm ., and have a basal diameter of about 2 mm .

In the polyp the spicules are arranged in an ring of four rows romed the base of the opereulum, and the spicules in the high conical opereulum are placed en chevron with two spicules in each point.

The surface of the verruc:e and general cenenchyma bristles with projecting spines, so that the whole colony has a very rough thomy appearance, which suggested the specific name circinm.

The spicules of the polyps are spindles and chuns with divaricate folia, covered by spines which either stand perpendicularly, or are inelined to the surface of the spicule. The following measurements were taken of length and lweadth in millimetres:

1. Spindles straight or curved, $1.3 \times 0.15 ; 0.9 \times 0.075 ; 0.2 \times 0.025$.
2. Clulss with folia, $0 \cdot 9-1$ in length lyy $0 \cdot 4-0 \cdot 7$ across the folia.

Many of the spindles have one end with spines arising perpendicularly to the surface, and the other end with slanting spines, especially in the curved forms. In the chuls, the length of the spine varies from $0.3-0.6 \mathrm{~mm}$.

The spicules of the general comenchyma are (1) spindles straight or curved; (2) curved spindles with a folizceons expansion alout the middle of the convex side; (3) U-shaped spicules, and very irregnlar forms. The following dimensions were noted:

Spindles from $0: 3-0.6 \mathrm{~mm}$. in length, and from $0.0:-0.05 \mathrm{in}$ breadth.

U-shaped forms with a spread of $0 \cdot 1-0.3$ between the tips of the arms.
This species is near Acrmptogergia horpidre, Hickson, hut differs from it in the size of the polyps and in the size of the spicules.

The branches have much entangled foreign material, e.g. two speeimens of a spirally coiled Solenogaster (Rhopalomenic gorgomophita ').

Locality : Station $333 ; 6^{\circ} 31^{\prime}$ N., $79^{\circ} 38^{\prime} 45^{\prime \prime}$ E. ; 401 fathoms.

Acis spinosa, n. sp. Plate $Y$. fig. 11.
I small specimen, white in colour with a tinge of hown, 86 mm . in height and abont 50 mm . in width.

The branching is coufined to one plane, and is very irregular. Between the origins of the large hranches small twigs are given off bearing a few polyps.

The axis is horny, about 3 mm . in diameter at the lower end, slightly oval in section, with its surface marked by longitudinal ridges.

The polyps occur all round the stem and branches. In the anthocodise there is a very rudimentary collaret formed of at most two rows of spicules, and at the base of the tentacles two spicules are placed side by side, with their lower ends resting ou the collaret, thus forming a conical operculum over the iufolded tentaeles.

The verruce are short, and the retracted anthocodiæ lie almost completely hidden within them. They are formed of scale-like spicules, and a number of apical spines project from the uppermost row.

The general cenenchyma is thin and covered by large spicnles, either spiudles or elongated seales.

The spicules may be divided into three gromp: (1) fusiform, (2) modified fusiform, and (3) squamous.

1. The fusiform spicules are usually straight, covered with rough warts, and have the following dimensions:- from $0.2-0.7 \mathrm{~mm}$. in length, from $0.07-0.2$ mm . iu width.
2. The modified fusiform spicules are very large, and nsually have a number of monticular processes on one side. They vary in length from $0 \cdot-\cdots \cdot 5 \mathrm{~mm}$., and in breadth from 0.20 .65 mm .
3. The squamons forms are very irregular in slape; they have several sharp-pointed proeesses growing out from one side, and are eovered by rough warts. The following measurements were taken of length and breadth in millimetres :

$$
1.1 \times 0.6 ; 0.7 \times 0.6 ; 0.5 \times 0.4 .
$$

To the types of spicules already noticed there must be added:

1. Club-shaped spicules bent at one end, with the long handle nearly or quite smooth, $0 \cdot 5-0.55$ iu length by $0 \cdot 1-0 \cdot 12$ in breadth ; and
2. Plate-like monifications of the squamons type, with an cecentrie nucleus and with a large rough spine projecting from one side. Their dimensions are: $0.7 \times 0.3 ; 0.7 \times 0.4: 0.5 \times 0 \%$.

Lowality: Andamans: : $270-4.5$ fathems.

## Muricella bengalensis, in. sp. Plate 1. fig. 8; Plate VIll. fig. 2.

A specimen of a rose-red colour, 33 mm . in height.
The colony is loranched in one plane: the luanches are almost regularly altemate. There is a Hat-spreading lase, and just alove it the stem takes a half-S eurve and then grows straight. The tips of the twigs are ocempied by two divergent polyp. The axis is homy, with a faintly-striated surface, with a hasal diameter of alfout 1 mm .

The polyps occm on the two lateral surfaces of the stem and branches, and are irregularly altemate. (1) the anthocolise the spicules are arranged at the lase of the tentacles in inverted $V^{\prime}$ s, each formed of two converging spicules with their divergent bases resting on a transversely-placed spicule, which may have another lying close besile it. On the abotal surface of the tentacles there is a band of longitndinally arranged colourless spieules, $0.1-0.15$ in length by 0.02 in hrealth.

The vernce are short and truneated (about 1 mm . in height), built up of ${ }^{\mathrm{s}} \mathrm{p}$ ienles aranged on the whole longitudinally. Lomed the apex there are projecting tips of spicules. The general cenenchyma is thick, and contains long warty spindles either straight or curver, varying from transparency to pink and red. The following measurements, were taken of length and loreadth in millimetres:

$$
2.8 \times 0.3 ; 0.9 \times 0.15 ; 0.36 \times 0.07
$$

Loceality: Andamans; :270-45 fathoms.
Another specimen is a brilliant red colony, 70 mm . in height by 45 mm . hrenlth, with a tendency to keep to one plane of branching. The polyps often appear altermate, but they are actually in a steep spiral.

The ecenencluma is corered with large, rather broad, irregular spindles, covered with tuberenate warts. Some of them attain a length of over 2 mm . and a breadth of 0.4 mmn .

The verruce are steep trunate cones formed liy similar but smaller spindles aranged longitudinally. The apical margin of the verruca is irregularly intermpted loy the projecting ends of the spicules forming the wall. There is a tentacular olxurulum formed of whitish spinlles withont much definiteness of arrangement.

Lowality: Bay of Bengal : 88 fathoms.

## Family Gorgoxid.e.

Callistephanus koreni, Wright and Studer.
This species is represented by a portion of a colony, of a beautiful coral red colour, 8: mm. in height.

The main stem, or branch, is about 2.5 mm . in rliameter, and gives off eight branches ( $6-28 \mathrm{~mm}$. in length), two of which again branch. All the branches arise nearly at right angles, and lic for the most part in one plane. Two of the smaller branches and one of the twigs arise almost at right angles to the general plane of branching. The branching is more profuse thau Wright and Studer supposed.

The vemuce are arranged alternately on all sides of the main stem, but in the smaller branches they are more or less confined to the lateral faces. Wright and Studer describe them as altogether lateral. The termination of a branch or twig is occupied by two diverging verrucæ. The distance hetween two vemuce on the same side varies from $3-4 \mathrm{~mm}$. In the main stem, but is usually less in the smaller branches and twigs. The veruce lave a maximum height and a maximum hasal width of 2 mm . The polyps are capable of complete retraction; the tips of the tentacles are risible in a few.

The conenchyma is rough and of moderate thickness. The spicnles composing it are warty spindles, club-like spicules, and a few iregularly quadriradiate forms. They vary in size as follows:

1. Warty spindles, $0.15-0.35 \mathrm{~mm}$. in length and from $0.00-0.05 \mathrm{~mm}$. in breadth.
2. Club-like spicules, $0.09-0.12 \mathrm{~mm}$. in length, and from $0.04-0.07 \mathrm{~mm}$. in brearlth.
3. Quatriradiate forms, $0.13-0.16 \mathrm{~mm}$. from tip to tip in one lirection. $0.1-0.12 \mathrm{~mm}$. in the other.
Locality: Andaman Sea: 238-290 fathoms.
Previonsly recorded from "Challenger" Station 344 off" the lsland of Ascension ; 420 fathoms.

Family Gorioovellide.e.
Nicella ftrlbelluta ( = Vempacella Alaluelatr, Whitelegge).
Juncella elongrata, Pallas.
„ minicacea, n. sp.
Scipearelle momiliforme, Wright and Studer.
" allat, n. slp.

## Nicella flabellata ( = Vimprello flabellata, Whitelerge).

A small colony without basal attachment, ochreous-yellow to brownish white in colour, about 95 mm . in height.

Most of the branches arise from one side of the main stem, which has a zigzag course. The hranches are slender', somewhat swollen at the tip, and confined to one plane. Most of the secombary branches are given off from one side of the primary branches.

The axis is homy and markedly calcareous, somewhat flattened in the plane of branching, with a shallow grove on the flattened faces. At the lower end it has a diameter of 2 mm .

The polyps occur in a sinuous row on calch side of the younger bramches; on the stem and on the older portions of branches they are more wumerons and encroach on the two Hattened surfaces, always leaving the slight median depression free. Those on opposite sides alternate.

The verruce are low conical warts, with the poly 1 completely retracted. In other species of Vicello the verruce stand ont more prominently; but we disregard this difterence, as we have seen in other Gorgonellids that the prominence of the verruce varies greatly according to the state of retraction and mode of preservation. The veruce are formed of spicules similar to those of the general conenchyma, and when the polyp is completely retracted they show no rayshapert marking at the apex. They are ahout 1 mm . in height. The smatler hranches, where the size of the verruce is large in proportion to the diameter of the branch, have an molulating coutour.

The cencnehyma is fairly thick, and has two layers of spienles. Next the axis the soft tissue of the cuenenchyma is very dark hown.

The spicules are small donble clabs with warty projections and spindles. Some of the spindles are relatively broad, blunt at the ends, and closely covered with warts, others are very slender and sharp-pointed, and have relatively few spiny projections. I few showed a minute free space at the midde. The following measurements were taken of length and breadth in millimetres:

1. Smal! double clubs, $0.05 \times 0.03 ; 0.04 \times 0.03$.
$\because$. Spindles, $0.19 \times 0.04: 0.14 \times 0.03 ; 0.09 \times 0.02$.
The specimen is practically the same as Whitelegre's Vermeella flebelluta, but it seems to us that this shouk have heen placed in the genus Nicplle.

Locality : Amemans; 270-45 fathoms.
Previously recorded from Funafuti.

Juncella elongata, Pallas. Plate l. fig. 10 ; Plate IX. fig. 17.
This species is represented hy two branched pieces, 220 and 160 mm . in length. In hoth the base is present, and consists of a flattened portion, slightly conical in one specimen, spreading over the surface of a calcareous conglomerate.

The axis is calcareons, rigid, and brittle ; it is slightly oral in section, but in the younger portions it becomes quite cylindrical and tapers till it is thread-like. It shows a very white core surounded by a hownish cortex. It has a maximum diameter at the base of 3.3 mm .

The veruce are low and truncate, and arranged in four lows in the older portions. In the younger parts they appear to be arranged in two rows on the opposite lateral faces. They have a height of about 0.5 mm . and a diameter of 1.5 mm . at the base.

The coenenchyma is thick, brick red in colour, and contains three types of spicules, of which the following measurements were taken of leugth and breadth in millimetres :

1. Spiny spindles, $0.13 \times 0.025 ; 0.12 \times 0.03 ; 0.1 \times 0.03$.
2. Double clubs, $0.09 \times 0.05 ; 0.08 \times 0.045 ; 0.065 \times 0.04 ; 0.06 \times 0.04$.
3. Double stars, $0.08 \times 0.04 ; 0.07 \times 0.04 ; 0.07 \times 0.35$.

There is a trace of a bare space and a ridge-like mark; otherwise the specimens agree well with Juncella elongata.

Locality : Bay of Bengal ; 88 fathoms.
Previously recorded from Atlantic (Pallas) ; West Inties (Ellis and Solander); variety from N.E. coast of Austratia (Ridley) ; var. capensis, Algoa Bay (ITickson).

Juncella miniacea, n. sp. Plate V. figs. 7 and 12.
A fragment of a beantiful vermilion red colony, 43 nm . in height.
The stem, which lacks its basal portion, bears two large ciriped galls, one near the lower end aud the other almost at the middle point. It gives off three alternating branches all in one plane. On the stem and branches the polyps are elosely disposed and arise from all sides, even on the surface of the galls. The axis is very calcareous, straw-coloured, flexible, cylindrical, with a smooth surface and a diameter of 0.5 mm . near the lower end.

The verruce oceur in a crowded irregular spiral, the fourth being often vertically ahove the first. They are large and prominent, ovoid in shape, and usually curved towards the axis. The polyps are wholly retracted, and in this condition the apex of the verucse shows a small median aperture marked by an cight-rayed star. They are 1.25 mm . in height, and lave a basal diameter of 1 mmn . and an apical diameter of 0.75 mm .

The general enenenchyma is thin, lying evenly over the surface of the stem and branches; and also spreating over the harnaeles, and giving rise to numerons small polyps there. The surface has to the naked eye a smooth but arenaceous appearance. Under low power it is seen to be continuonsly covered with the glistening spherical heads of slightly projecting radially disposed reddish spienles. The spicules include the following types:

1. Long warty colourless spindles, $0.175 \times 0.03 ; 0.12 \times 0.03$.
2. Small warty reddish spindles, $0.08 \times 0.02 ; 0.07 \times 0.02$.
3. Reldish single elubs, $0.055 \times 0.03$ (at the thick end).
t. Reddish double chuls, $0.08 \times 0.04 ; 0.06 \times 0.035$.

This specimen belongs to the Nicella group of the Juncellas, but it differs from Nicella in the arrangement of the polyps. It agrees, however, in the form and termination of the verruce, and in the fact that the verrncie arise at right angles to the stem and then enve inwards.

There are almost equal proportions of spindles and clubs.
Locality: Audamans; 120 fathoms.

## Scirpearella moniliforme, Wright and Studer.

This species is represented by an unbranehed fragment 88 mm . in length.
The axis is very calcarcous and brittle, 2 mm . in diameter. There are two deep grooves on two opposite sides, and between them a number of smaller grooves.

The stem shows two marked furrows, caused by the two decp grooves on the axis, dividing the polyp-hearing portion into two narrow bands.

The polyps are arranged in four irregular rows, the members of which alternate.
The counenchyma is very thin. Its spieules are either warty spindles, spiny spindles, stars, or dumble clubs. The spicular measurements are nearer those of S. gracilis, but in the slape of the spieules and in the marked grooving of the axis and in the low verruce our specimen comes nearest $S$. moniliforme, differing, however, in having more than ten grooves on the axis.

Locality : 8 miles west of Interview Island, Audamans; 270-45 fathoms.
Previonsly recorded from Amboina.

Scirpearella alba, n. sp. Plate IX. fig. 15.
Three incomplete specimens, white in colour, 281,411 , aul 408 mm . in length, with a corresponding diameter at the lower end of $1.75,2 \%$, and 1.75 mm .

Two of the colonies are unbaneherl, but the longest limathes at a distance of 251 mm . from the lower end.

The axis is cylindrical, lard, brittle, and very caleareous, but becomes tlexible
and filiform near the tips. It is marked by a number of grooves which run up for a short distance, and also by a number of small protuberances.

The stem is oval in section with a groove on the two flattened surfaces, faintly marked in two of the specimens.

The verruce occur in a single row on each side of the stem, those of one row alternating with those of the other. They are low and trancated $(0.45 \mathrm{~mm}$. in height), laterally compressed, with spreading bases. The diameter is 1.4 mm , at the base, 0.65 mm . at the apex.

The coenencliyma is moderately thick, and contains spiny spindles, double clubs, and irregular stars with an X -shaped marking. The following measurements were taken of length and breadth in millimetres:

1. Spiny spindles, $0.19 \times 0.07 ; 0.18 \times 0.065 ; 0.15 \times 0.04 ; 0.10 \times 0.03$.
2. Double clubs, $0.15 \times 0.1 ; 0.14 \times 0.08 ; 0.13 \times 0.08$.
3. hregular stars, $0.11 \times 0.08 ; 0.1 \times 0.07 ; 0.1 \times 0.065$.

In the double clubs there are several grades, some with a fairly long bare middle part and few whorls of warts, others with a very short median bare part and many whorls of warts.

This speeies differs from Scirpearella moniliforme in the number of rows of verruce, in not having a deeply grooved axis, in the size of the polyps, and in the spicules.

Locality: Bay of Bengal; 88 fathoms.

```
Order V. STELECHOTOKEA, Bourne. SECTION ASIPHONACEA.
Family TELAEstibaf. Telesto reithemi, Hickson and IFiles. ," rubra, Hickson.
```

Telesto arthuri, Fickson and Hiles.
This species is represented by two fragments, one of which is attached by a hroad lasal membrane to a broken piece of coral. Both pieces are simple, unhranched, with mumerous polyps. Their heights are 43 and 39 mm . They present a rough appearance owing to the projection of many of the spicules, especially at the orat surfaces of the polyps. The colour is white. The polyps are arranged in a very irregular manner, either in short spirals of $2-4$, or in whorls. Between the spirals or whorls single polyps ocemr. A portion boiled with eanstic potash disintegrates and leaves no axial skeleton. The following measurements were taken of the length and brealth of the spicules in millimetres:

1. Those with rongh warts,
a. Spindles straight or curved, $0.8 \times 0.1 ; 0.6 \times 0.15 ; 0.5 \times 0.08$; $0.3 \times 0.05$.
b. Tri- and quadri-radiate forms, $0.6 \times 0.35 ; 0.3 \times 0.15$.
2. Those with shanp spine-like projections,
( . Spindles straight or curved, $0.8 \times 0.07$; $0.6 \times 0.07 ; 0.5 \times 0.04$; $0.4 \times 0.05$.
b. Quadriradiate forms, $0.2 \times 0.18 ; 0.8 \times 0.15 ; 0.4 \times 0.16$.

Many of the spicules seem to be a combination of 1 a and $2 a$. They are hent at an angle, and have one of the ends covered with rough warts and the other covered with sharp spines.

The specimens agree with $T$. arthui (1) in having no grooving, (2) in there leing no axis, (3) in the arrangement of the polyps, and (t) in the shape of many of the spieules. They differ in not having the secomdary polyps so crowded; hut this probalby means that the specimens are young forms, as is also indicated ly the ready disintegration of the skeletom when boiled with canstic potash.

Incality: Station 232; $7^{\circ} 17^{\prime} 30^{\prime \prime} \mathrm{N} ., 7654^{\prime} 30^{\prime \prime} \mathrm{E} . ; 430$ fathoms.
Previonsly recorderl from Blanche bay, New Britain.

## Telesto rubra, Hickson.

A small but complete specimen, 38 mm . in height. The base is formed by a Hat spreading portion, which is attachel to a piece of weathered rock.

There is a single branch given off at a distance of 34 mm . from the lase.
The polyps, 2.5 mm . in height, arise at right angles to the stem, and are arranged on the four sides in such a way that they seem to form a spiral. Nearer the tip the polyps on opposite sides are almost at the same level.

After repeated treatment with boiling canstic potash the stem retains its form, and the polyp-walls remain quite intact.

The specimen agrees with T. rubru in the ridges on the stem, in the minute quantity of horny matter, and so on.

To this species we also refer another fragment 2.5 mm . in length. It is simple and unbranched, and has polyp calyces ahont 2 mm . in height.

Locality : Andamans; 120 fathoms.
This species has been previonsly recorded by Hiekson from the Maldives: Mulakir Atoll, 25 fathoms; Mahlos Atoll, 23 fathoms; and by us from Trincomalee.

## SECTION PENNATULACEA.

## Family Protocaclidee.

Protocaulon indicum, n. sp. Plate VII. figs. 3 and 7.
This species is represented by three complete specimens, 30,44 , and 46 mm . in height.

The stalk is about 14 mm . in length, and is very delicate. It has a spindleshaped swelling just below the beginning of the rachis.

The rachis is long, and the polyps are placed opposite in a single row on each side. They are about 5 mm . in height; broad at the base, gradnally narrowing, and then slightly enlarging again at the oral encl. The tentacles are long and slender, with one row of pinuules on each side. Alove their origin the oral surface of the polyp is swollen so that it projects a little. In the larger polyps the lower portion is filled with reproductive bodies.

The axis is thin, very calcareons, and quadrangular in section, each side showing a lollow groove. Near the lower end of the rachis in the largest specimen the axis is 0.25 mm . in diameter.

In the largest specimen the tip of the rachis is not ocenpied by a polyp, but just below the tip a polyp arises at right angles to the phame of the others. In al younger specimen two polyps occur below the tip.

Spicules are absent.

Locality : Station 239 ; $11^{\circ} 49^{\prime} 30^{\prime \prime} \mathrm{N} ., 92^{\circ} 55^{\prime}$ E. ; 55 fathoms.
There is only one other recorded species of this genus, viz. Protocuuton molle, Källiker. The genus has a noteworthy geographical distribution from the "('hallenger" Station 169 , north-east of New Zealand, $37^{\circ} 34^{\prime} \mathrm{S} ., 179^{\circ} 22^{\prime} \mathrm{E}$, to the Andamans. Its bathymetrical range is no less interesting, varying from 55 fathoms in the present case to 700 fathoms for Protocaulon molle.

## Family Protoptilin.t.

Protoptitum medium, n. sp.
Distichoptilum gracile, Verrill.

Protoptilum medium, u. sp. Plate III. fig. 1.
This species is represented by an incomplete specimen 133 mm . in length.
At the basal end there is a small globular swelling, the walls of which are very thin; above that there is a longer spindle-shaped swelling. At the upper end of the latter two grooves start, one ruming up the prorachidial surface, the other ruming mp the opposite side. The prorachidial groove is more marked, and extends the whole length of the rachis; the other is not so evident, and gratually disappears.

The axis is eylindrical, smooth, brittle, and very calcareous. The superficial spicules of the coenenchyma give the specimeu a gramular appearance.

At the lower end of the rachis the immature antozooids appear as one row on each lateral surface, those in the one row alternating with those in the other. As they reach maturity they gradually depart from the strictly lateral position, and become more dorso-lateral. The mature autozooids are elosely appressed to the stem, $4.5-5.5 \mathrm{~mm}$. in length from origin to apex, with an oral diameter of 2.5 mm . They we abriptly truncated at the mper end, but have no teeth. The teutacles have a few projecting spienles at their proximal end, and are capable of complete retraction, forming an eight-rayed star.

The spicules of the conenchyma are spindles or rods free from warts or spines, lout iibbed. They are colourless and very translucent.

This species seems to be intermediate between $P$. aberrans (Kölliker) and $P$. (arpenteri (Kolliker).

Locality: Station 151; Colombo Lighthonse, S. 64, E. $13 \frac{1}{2} \mathrm{m}$. ; 142-400 fat liomis.

Distichoptilum gracile, Verill. Plate IV. fig. 7 ; Plate IX. fig. 2.
This species is represented by a large number of specimens, several of which have a length of 775 mm . ; hat all are incomplete.

The axis is white in colonr and very ealcareous, varying greatly in diameter, from $0.7-1.5 \mathrm{~mm}$. It is sub-cylindrical, with two opposite sides slightly Hattenerl. Towards the lower end in several specimens two grooves are seen; towards the upper end the shape is nearly 'quite cylindrical. It is very brittle, and only slightly Hexible in the lower part.

The ealices of the antozooids are prominent, but the axial side is closely appressed to and fused with the stem. Tn the lower part they seem to be arranged in spirals ; lut this is soon lost, and they are arranged on opposite sides alternately. The abaxial elge of the calyx is toothed, but in some specimens this is indistinct owing to the state of retraction of the autozooids. The calyx is formed of small needle-shaped spicules arranged parallel to the long axis; the length varies from 1.5 mm . on the lower part of the rachis to 3.6 mm . in the upper part. On the lower part of the rachis the calices are more crowded than on the upper part; and the tip of the one reaches to the level of the base of the other ; but on the extreme upper portion of the rachis they are more widely separated.

In the majority of cases the antozooils are completely retracted within the ealices.

The presence of siphonozooids in close connection with the polyps is an interest--ing feature. According to Verrill, three siphonozooids occur above each verruca; Jungersen, on the other hand, from his study of the specimens in the Ingolf Expedition collections, was led to regard the presence of a third siphonozooid as quite problematical. From the specimens in the present collection it is evident that the siphonozooids may lee two or three. There is one on each side of the calyx at about the same level, and over one of them there is sometimes a third.

The cœenenchyma is thin, allowing the axis to shine throngh in most of the specimens. Abuudant ova are visible in the lower part of many of the autozooids.

The spicules are slender, smooth but Huted rods tapering slightly to both ends, but ending bhontly. The following measurements were taken of length and breadth in millimetres: $0.3 \times 0.02 ; 0.3 \times 0.04$. There are smaller, more oval forms, $0.04 \times 0.02$. All the spicules are exceedingly brittle. In colour they vary from a very pale to a deep sherry tint. The upper portion of the abaxial wall of the calyx is reddish, all other parts are yellowish or yellowish-white.

In many of the specimens an embryo was fomn towards the base of the setracted antozooid on the abaxial side. The embryo is a flat circular dise from $0.52-0.55 \mathrm{~mm}$. in diameter ; the ova are spherical, from $0.15-0.2 \mathrm{~mm}$. in diameter.

Locality : Station $231 ; 7^{\circ} 34^{\prime} 30^{\prime \prime}$ N., $76^{\prime} 08^{\prime} 23^{\prime \prime} \mathrm{E} . ; 836$ fathoms.

A single specimen from another locality is more slemder and graceful, and has a different colour scheme. It is whitish-yellow, with the tips of the calyces pinkish.

Locality : Station 321; 5" $4^{\prime} 8 \frac{1_{2}^{\prime \prime}}{}$ N., $80^{\circ} 22^{\prime}$ E.; 660 fathoms.
Previonsly recorded from: $63^{\circ} 06^{\prime} \mathrm{N} ., 56^{\circ} \mathrm{W} . ; 61^{\circ} 39^{\prime} \mathrm{N} ., 17^{\circ} 10^{\prime} \mathrm{W}$. (.Jngersen); Sonth-west of Nantucket Island; $39^{\circ} 59^{\prime} 45^{\prime \prime} \mathrm{N} ., 68^{\circ} 54^{\prime} \mathrm{W}$. ('errill); and $0^{\circ} 4^{\prime} \mathrm{S}, 90^{\circ} 24^{\prime} 30^{\prime \prime} \mathrm{W}$., $23^{\circ} 59^{\prime} \mathrm{N} ., 108^{\circ} 40^{\prime} \mathrm{W} ., 1^{\circ} 7^{\prime} \mathrm{N} ., 80^{\circ} 21^{\prime} \mathrm{W}$. (Studer).

The bathymetrical range varies from $700-1573$ fathoms.

## Family Kophobelemanilu, e:

Kophobelemnon burgeri, Herklots, var. intice, u. Sclerobelemnon kiollikeri, n. sp. Bathyptitum indicum, n. sp. Thesioides inermis, n. g. et sp.

Kophobelemnon burgeri, Herklots, var. indica, 11.
This species is represented by a beautiful club-shaped colony, 57 mm . in height, with a pointed upper end.

The stalk is shorter than the chub-shaped rachis.
The axis is white, almost cylindrical in shape, extending the whole length of the colony and tapering grantually to its lower end, where it has a diameter of about 0.5 mm .

The rachis is club-shaped, and tapers to a point at its upper end. It reaches its maximum diameter, 5 mm , at a point 4 mm . from its aper.

The autozooids are arranged irregularly on the pararachidial surfaces in five rows. They are of medinm length, and are capable of complete retraction. At a certain stage of contraction they seem to have distinct calyces marked off from the upper part of the prolyps. Their walls contain spicules, ant in the lowest part of the walls these are very numerons, ananged longitudinally in eight bands with a few spicules between. Farther up these bands hecome narow zigzag streaks with transpersely placed spicules, but this transverse arrangement seems to be due to the contraction of the polyp walls. In the tentacles there are longer needle-shaped spicules arranged longitudinally.

The whole surface of the colony is covered by an outer coating of spicules which are visible to the maked cye and give a whitish appearance to the specimen. On the rachis this outer covering forms a loneyomb, with the siphonozooids in the cells.

The siphonozooids are numerons, hrown in colour, and present an eight-rayed appearace. They occur over the whole surface of the rachis not occupied by auto-
zooids, with the exception of a narrow groove on the prorachidial surface, which extends the whole length of the rachis and has a markedly yellow colour.

In the autozooids the spicules are irregularly shaped rods blunt at the euds, often hour-glass-like. The following measurements were taken of length and breadth in millimetres:

$$
\begin{aligned}
& \text { Rods, } 0.26 \times 0.04 ; 0.08 \times 0.07 \\
& \text { Hour-glass forms, } 0.3 \times 0.15 ; 0.2 \times 0.1 \text {. }
\end{aligned}
$$

In the lower part of the stalk the spicules are flat, pear-shaperl, sparle-shaped, biscuit-shaped, three-comered, and cruciform, the last two forms having a distinct X-shaped marking near the centre. In several of the liscuit-shaped spicules there is a distinct single mark running across the breadth, and in the pear- and spadeshaped forms the broad end is very often marked hy small teeth. The surface of all the forms has a pitted or granular appearance. The following measurements were taken of length by brealth in millimetres:

$$
0.17 \times 0.05 ; 0.16 \times 0.08 ; 0.15 \times 0.055 ; 0.05 \times 0.05
$$

This specimen differs from the trpical $h^{\text {. }}$ Inngeri, Herklots, in having the spicules arranged in bands on the antozooils, in the presence of makedly cruciform spicules, and in the larger size of the spicules.

Locality: Station 169 ; $13^{\prime \prime} 05^{\prime} 27^{\prime \prime}$ N., $80^{\circ} 33^{\prime} 44^{\prime \prime}$ E.; 91 fathoms.
Herklots' type was obtained from Japan.

## Sclerobelemnon köllikeri, n. sp. Plate VI. fig. 8.

If A. von Kölliker's separation of Sclerobelemnon from Kophubelemnon is justified, which we venture to doulst, this specimen should be referred to the former genus, for it has no spicules in its tentacles, and the antozooids are not arranged in longitudinal rows.

The single somewhat imperfect specimen is ahont 60 mm . in height, and is markedly elub-shaped. The cœnenchyma of the stalk and of the lower part of the rachis is damaged, allowing the axis to project for 12 mm .

The axis is cylindrical, and tapers to the lower enl. It is marked by a number of longitudinal furows, two of which are considerably deeper than the others.

The rachis is longer than the stalk and considerably swollen near the tip, where it has a breadth of 10 mm . There is a prorachidial streak, 3 mm . in lreadth, free from antozooids, densely covered by longitudinal rows of siphonozooids.

The autozooids are arragen bilaterally in about six short ohlique rows, usually three in each row. The siphonozooids occur over the whole unoccupied surface of the rachis. As Kölliker descrihes in s.'. selmeltzii, there is marked contrast between the more delicate distal region of the antozooid and the more substantial calyx-like proximal region.

There is a very sparse occurrence of spicules, lat some were found in the calyx-
like lower portion of the antozooids. They are quite smooth and regular in outline, mimite oroid dises with a slight waist in the middle. Many suggest small double dinner-rolls. Those measured were 0.05 mm . in length and 0.03 mm . in lireadth.

Locality : Station 246 ; $11^{\circ} 14^{\prime} 30^{\prime \prime} \mathrm{N} ., 74^{\circ} 57^{\prime} 15^{\prime \prime} \mathrm{E}$; 68-148 fathoms.

## Bathyptilum indicum, u. sp. Plate VII. fig. 4.

The specimen is broken into two pieces which make a total length of 118 mm . It consists of a rather long stalk and a shorter rachis, and is club-shaped apart from a large globular enlargement at the lower end of the stalk. The general colour is grey, with a pinkish tint more marked in the rachis and tentacles.

The stalk is long, and gradually increases in width towards the upper end. lts lower end bends at an angle of almost $90^{\circ}$ with the main part, and bears teminally a large thin-walled globular enlagement. On its thin walls there are several white bands of minute white spicules.

The axis is sub-cylindrical, its flattened surface making it almost cuadrilateral.
The rachis increases in size until near the tip, where it legins to taper. It ends, however, in a blunt point. The autozooids are arranged on the metarachidial and pararachidial surfaces, leaving the prorachidial surface with a broad free space.

There are five fully developed large autozooids and one or two smaller. They are large with long tentacles, and are slightly directed towards the tip of the rachis. They are 7 mm . in length, and the tentacles are slightly longer ( $8-9 \mathrm{~mm}$.).

Small siphonozooids oceur over all the surface of the rachis not occupied by antozooils. They project a little above the surface, and have their apices directed slightly towards the tip, of the rachis.

At the lase of the rachis there is a slight spindle-shaped enlargement containing reproductive bodies.

The general cenenchyma of the stalk and rachis is thick, and has a granular appearance owing to the presence of abundat spicules.

The spicnles are long slender fluted rods, with bunt ends which show a peculiar tooth-like arrangement when examined under a high power. The following measurements were taken of length and breadth in millimetres:

$$
0.33 \times 0.028 ; 0.28 \times 0.02 ; 0.14 \times 0.02 .
$$

This species differs from Bathyptitum carpenteri, Kolliker, in the following points:

1. In laving slightly smaller spicules, though the whole colony is larger;
$\therefore$. In the arrangement of the siphonozooids;
2. Iu having a large llatder at the end of the stalk;
3. In having fewer antozooids;
4. In the size of the axis, which has a diameter of 1.05 mm .

Locality : Station 315 ; $10^{\circ} 06^{\prime} \mathrm{N} ., 92^{\circ} 29^{\prime} \mathrm{E}$; 705 fathoms.

Thesioides inermis, n. g. et sp. Plate Yl. figs. 1 aurl 2.

## General Features.

This new type is marked by the greatly elongated slender rachis borne by a short stalk.

The autozooids are long, slender, and without calyces. They are not fused to form pinnules, but occur irregntarly on the pararachidial surfaces.

The rachis is more or less quadritateral, with grooves on the metaraehidial and prorachidial surfaces, distinct on the lower part, less distinct in the upper part. There are no spicules.

This genus must be placed in the first section of the Junciformes of Külliker, near the genus Buthyptitum. We have namel it Thesioides from its resemblance to the raceme of Thesium.

More detailed Description.
The maximum length is 360 mm .
The short stalk shows a terminal enlargement in which the base of the axis lies, and another a short distance ahove this. The colour of the stalk is yellowish to pinkish-brown ; the autozooids are brownish-white in their lower part, darker brown in their upper part and tentacles. There is a peeuliar bluish tint all over.

The axis is cquadrilateral ; its sides show shallow grooves which become less distinct towards the upper end. The lower portion is redueed very rapidly, and lies curved into a hook in the lower swelling of the stalk; the upper portion tapers more gradually torrards the tip, where it becomes filamentons.

The rachis is long and slender, more or less quadritateral in eross seetion, and bears the autozooids irregularly on the pararachidial surfaces.

The autozooids vary in leugth from $2 \cdot 5-10 \mathrm{~mm}$. The longest have a diameter of $1: 3-1.4 \mathrm{~mm}$. They are probably cylindrical in shape, but they are greatly wrinkled owing to contraction in the preserving fluid. The tentacles are short, and bear on each lateral surface one row of pinnules, which, owing to crowding, seem to lee arranged in two rows at the base. The tentacles themselves are very peenliar in shape, and may be divided into two parts; the lower part short and broad with the pinnules arranged as above, the upper part a little longer, thin and whip-like, with very few long Hagella-like pinnules rising from it. On the lower part a number of the pinmules near the tip are also produced into long flagellum-like structures. This arrangement must have given the tentacles a peculiar appearance in the living state.

Siphonozooids are present on the pararachidial surfaces between the autozooids, and also form a row along each edge of the grooves on the prorachiclial and metarachidial surfaees.

Spicules ate entirely alisent both in the stalk and in the rachis.
Localities: Nation :324; $18^{\prime} 0^{\prime} 15^{\prime \prime} \mathrm{N} ., 9: 3^{\circ}: 30^{\prime \prime} 45^{\prime \prime} \mathrm{E}$; 448 fathoms. Station $323 ; 16^{\circ} 25^{\prime} \mathrm{N} ., 433^{\circ} 43^{\prime}: 30^{\prime \prime}$ L.; 463 fathoms.

> Fimily Uurbllectame.
> Umbellule durissimer, Kölliker:
> .. decrel, 11. sp).
> .- intermerlia, n. sp.
> .. rosea, n. sp.
> ,. purpurea, 11. sp.
> ,. elomeguter, n. sp.
> .- Löllikeri, n. sp.
> -, ratiata, n. sp.
> ., pentula, 11. sp.
> " inulica, n. sp.
> " sp.

Umbellula durissima, Kölliker.
A single specimen of this speeies was foum at a depth of 1132 fathoms, near the Lacuadives. Its total length was orer 450 mm .

The long, cylindrical, flexible stalk is of a hownish colome, and apparently withont siphonozooids. At the lower end there is a spimlle-shaped enlargement, fuadrangular in section, with prominent elges, $41 \cdot 5 \mathrm{~mm}$. in length. The axis is nearly cyliudrical.

The rachis is a flat rhomboid expansion of the stalk, and is covered with siphonozooids, with the exception of a small narrow line on the prorachidial surface. They are very almurlant at the lases of the antozooils.

The antozooids are four in mumber, three large and one smaller; their arrangement is loy no means definite, hat they seen to be arranged more on the meta- and para-rachintial snifaces. The average length of the borly of the autozooid is 9.75 mm ., that of the tentacles 11.3 mm . 'The bodies of the antozooids and the aboral surfaces of the tentacles are white, while the oral sulfaces of the tentaeles and the pimules are hrown. The white colour of the antozooids and the aboral surfaces of the tentacles is due to calcareons needles, which are very long and are easily visible to the umaden eye. They are arranged roughly in eight rows on the autozooil wall, continnous with the lanels on the tentacles.

The spicules of the lower end of the stalk are small rods or ellipses, with longitudinally arranged ribs formen of minute spine-like processes. The following measurements were taken of Iength and brealth in millimetres:

$$
0.23 \times 0.03 ; 0.12 \times 0.04 ; 0.05 \times 0.018
$$

The spicules of the autozooids may be divided into two groups, (1) spicules similar to those of the lower end of the stalk but longer and proportionally. narrower and with fewer ribs; and (2) long spindles or ronts with rough jagged ends and minnte longitudinal ribs. The measurements. taken as above, are as follows:

1. $0.3 \times 0.02 ; 0.2 \times 0.02 ; 0.1 \times 0.03$.
2. $3.0 \times 0.4 ; 2.2 \times 0.23 ; 1.8 \times 0.22 ; 1.7 \times 0 \%$.

The present specimen agrees with the description given by Kölliker except in a few points, e.g., some of the autozooid spicules are larger, and the arrangement of the spicules on the body wall is not so markedly in eight rows continuous with the tentacle rows.

The Indian Ocean sperimen agrees clozely with several collected by the "Scotia." The arrangement of the spicules in eight rows is somewhat disguiserl in the "Scotia" specimens, so that no weight ean he attached to this point.

Locality: Laccadives; 1132 fathoms.
The geographical distribution of this species is very interesting, for it has been previously recorded from Station 234, North Pacific Ocean, south of Yeddo, Japan, by the "Challenger," and from $48^{\circ} 6^{\prime} \mathrm{S}$. and $10^{\circ} 5^{\prime} \mathrm{W}$. by the Scottish Antarctic ship "Scotia."

The bathymetric range is $565-1742$ fathoms.

## Umbellula dura, n. sp. Plate VIII. fig. 9.

The stalk is long ( 280 mm .) and flexible, with an enlargement at the lower end. It is quadrangular, and lias a rough sandpaper-like appearance when dried. The axis is almost cylindrical.

The rachis is short, and forms an irregular inverted enne Hattened laterally and gradually diminishing until it joins the stalk. The autozooids are few and large. In the smaller of the two specimens there are three, ind as they appear to arise at the same level they may be in a circle ; or, as the median one is smaller, it may be the terminal autozooid with two others lateral, and thus the arrangement may be lilateral. In the larger specimen there are four large and two very small autozooids, and they may be classed into three sets according to size, one very large. three scarcely so large, and of nearly erpual size, and two small, again giving a type of bilateral arrangement, or au arrangement of one terminal and an imperfect whorl with two smaller polyps placel luetween the older.

The siphonozonids occur all over the rachis; they are small, and scarcely misen ahove the surface.

The spicules of the autozooids are of two distinct types:

1. Suall rods blunt at the ends and covered ly lougitudinal ribs formed of pointed conical spines; and
2. Long rods cither slightly pointed or blunt and slightly thicker at the
cuds, with minute tulnercles on the smface. The ends have a peenliar shattered or unfinished appearance.
The following measurements were taken of length and breadth in millimetres:

> 1. $0.14 \times 0.04 ; 0.12 \times 0.035$. $\therefore . ~$ $\therefore 5 \times 0.15 ; 0.95 \times 0.125 ; 0.3 \times 0.05$.

The spicules of the cenenchyma at the lower end of the stalk are short blunt rods or longish orals. In addition there are several guadhradiate forms with a distinct N -shaped marking at the junction of the lays, as if the rays were dovetailed into one another. There are also a few four-cornered forms with an X -shaped mark. The surface of the rots is covered by small spine-like tuhercles which are disposed in longitudinal rows and give the peculiar ribhed appearance. The measurements, taken as alove, are as follows:

1. Rods, $0.1 .4 \times 0.04 ; 0.125 \times 0.035 ; 0.115 \times 0.04 ; 0.10 \times 0.04$.
2. Quadrimdiate and four-comered forms, $0.08 \times 0.08 ; 0.06 \times 0.05$.

Locality : Station $315 ; 10^{\circ} 06^{\prime}$ N., $92^{\circ} 29^{\prime} \mathrm{E} . ; 705$ fathoms.

## Umbellula intermedia, n . sp.

The stalk is 220 mm . in length, slender and flexible, quadrangular in section, with a small enlargement at the very base and a long spindle-shaped enlargement a little above this. It has a maximm diameter of 1.2 mm , and is about 0.75 mm . in wilthe at its narrowest part. The axis is quadrangular in section, with a groove on each sile.

The rachis is distinctly bilateral and bears five autozooids, one terminal and two lateral on each side. It is ovoid in shape, aml marked on the prorachidial surface by a ridge formed by the end of the axis which roms up to the terminal antozooid.

The antozooids are of medinm length, with short bodies and long tentacles. They are rigid, and stand out stiffly from the rachis. 'The length of the botly is 33 mm . and the tentacles have a length of 8.5 mm . Ou the bouly of the autozooid and the aloral surface of the tentades there is a coating of spicules visible to the naked eye.

The siphonozonids occur all over the rachis, with the exception of the ridge on the prorachidial surface. They are small, and oecur in small meshes in the spicular covering.

The conenelyyma of the statk, the superficial layer of the rachis, and the surfaces of the autozooids and tentacles are clensely packed with whitish spicules visible to the mailed eye.

The spicules of the rachis and autozooids are rough ronts or bars, hant at the cuds and rilined. They vary from $0 \cdot 15-0.35 \mathrm{~mm}$. in length and from $0 \cdot 015-0.03$ mm. in width.

The spicules of the stem are smaller than those of the antozooids and proportionally wider. They are flat, and have a number of ribs rmming longitudinally. The following measurements were taken of length and breadth in millimetres:

$$
0.14 \times 0.05 ; 0.16 \times 0.045 ; 0.09 \times 0.05
$$

This species is intermediate hetween Umbellula güntheri, Kolliker, and Umbellula leptocaulis, Kölliker.

Locality : Station 278 ; $6^{\circ} 52^{\prime}$ N., $81^{\circ} 11^{\prime}$ E. ; 1912 fathoms.

Umbellula rosea, n. sp. Plate V. fig. 5.
This species is represented hy a single greyish-white specimen, which hat a heautiful pink colour when alive. The tutal length was 185 mm .

The stalk is very long and flexible, quadrangular in section, maked loy a groove on each surface, and never exceeding 1 mm . in diameter. The axis is quadrilateral, and so deeply grooved on the sides that the wing-like angles seem to be joinel by a small central portion. On the stalk there is a terminal enlargement and another longer one slightly above.

The rachis is very short, distinctly bilateral, with two pairs of lateral autozooids and one terminal. The autozooids have a length of $5-6 \mathrm{~mm}$. eren in the slightly contracted state, and a diameter of $2 \cdot 5 \mathrm{~mm}$. at the base. The tentacles may reach a length of 6 mm .

Siphonozooids are present on the metarachidial surface, and extend between the bases of the autozooids on to the pararachidial surfaces, but are apparently absent on the prorachidial surface.

In the lower part of the stalk there are abundant short and thick ellipses with numerous ribs. The following measurements were taken of length and lreadth in millimetres:
$0.16 \times 0.03 ; 0.10 \times 0.04 ; 0.09 \times 0.03$.
In the autozooids a few spicules can be seen in the skin; they are longer and proportionally thimer than those of the stalk, rough at the ends and at the margin, the rough appearance being apparently due to the frayed edges of the ribs. Their measurements, taken as abore, are as follows:

$$
0.3 \times 0.25 ; 0.26 \times 0.03 ; 0.22 \times 0.02 .
$$

Locality: Station 117 ; $11^{\circ} 58^{\prime} \mathrm{N}$., $88^{\circ} 52^{\prime} 17^{\prime \prime} \mathrm{E}$. ; 1748 fathoms.

Umbellula purpurea, n. sp. Plate V'Ill. fig. 3.
The specimens representing this species were dredged from varions depths in the vicinity of the Aulamans.

The stalk is long, flexible, quadrangular in section with prominent edgee, so
that the siles of the stalk seem to form shallow grooves. It has a yellow eolour. At the lower end there is a distinct enlargement with very prominent angles, and from this point the stalle tapers until a short distance below the rachis, where it again forms a distinct enlargement which gradually increases in size till it joins the lower end of the rachis.

The axis is quadrangular in section, with the sides so deeply grooved that the whole appeurs like four united pillars. At its lower ent the axis is 2 mm . in diameter ; it gradually tapers to the tip, which is hidden in the rachis.

The rachis is short, and has the appearance of a swollen part of the stalk. It carries a large number of autozooids, which all reach the same height or nearly so, the lower ones being the longest. The rachis is bilateral, although the crowded state of the autozooids almost entirely hides this arrangement. One specimen from which they were cut off showed that they stond in fom irregular circles or whorls. the outermost containing 7 , the next 12 , the third 14 , the fourth 10 , and in addition there were 7 autozooids at the very tip that had no definite arrangement. The antozooids are very long, 42 mm . in maximum length, with a diameter of 3 mm . The tentacles are long and tapering, with one row of hluntly conical pimmules on each side. In the basal portion of the autozooids there is an abuudant supply of ova about 0.75 mm . in diameter. The autozooids are yellowish-white to transparent in the lower parts, and greenish-hlack in the upper part; the aboral surface of the tentacles has a blnish tinge, and the oral surface and pinnules is light brown.

Siphonozooids are numerous on the basal part of the rachis; they are prolonged into $\Lambda$-shaped points on the pararachidial and metarachidial surfaces, and they completely corer the prorachidial surface.

Spicules are absent throughout the specimen.
Locality: Andamans.

## Umbellula elongata, n. sp. Plate VII. fig. 6.

This species is represented by one complete colony, about 631 mm . in length. The axis is more or less quadrangrlar in the lower part, and looks as if it were formed from four pillars fused where they touch. It becomes circular or oval in section in the upper part. It has a diameter of 2 mm. near the base.

At the lower end of the stalk there is a large swelling, which reaches its maxinum dianeter, 10 mm , at a pint 86 mm . from the base. From this point川wards the stalk, which is thickly covered by siphouozooils, gradually tapers till it reaches the beginning of the rachis. (On the lower part the coenenchyma is thick, but on the upper part it is thin. exeept at the two opposite sides, where it forms a continuous fold which runs the whole length of the axis.

The rathis is long, graulually thickening from its junction with the stalk and
then continuing without any increase in size. It is radial in symmetry, and carries a large number of autozooids which arise from all sides. The lower part is corkscrew-shaped, learing only the upper part straight. It reaches a length of 145 mm .

The autozooids are apparently arranged in short spirals. They are of medium length, 18 mm ., with a diameter of 25 mm . near the base. The walls are thick and tough, lout in the majority the tentacles are missing; they are white in colour, with a slight violet tinge in parts. Ova and embryos are present iu most of them. (See Plate V1I. fig. 6.)

Siphonozooids occur all over the rachis, and throughout the whole length of the stalk. On the lower part of the stalk they are larger than those on the upper part and than those on the rachis. Those on the lower part vary from $0.3-0.5 \mathrm{~mm}$. in height, and those on the rachis have a height of 0.28 mm .

Spicules seem to be restricted to the lower part of the stalk, where there are small rods smootli and rounded at the ends, and also a few four-cornered forms. The length and breadth of the latter is about 0.007 mm .

Locality : Station 229; $9^{\circ} 29^{\prime} 34^{\prime \prime}$ N., $75^{\circ} 38^{\prime}$ E.; 360 fithoms.

Umbellula köllikeri, n. sp.
The stalk is quadrangular, in some parts oval in section. At the base of the stalk there is a small swelling about a millimetre in thickness. The stalk is about the same thickness throughout its whole length, hut it has a very slight swelling at its junction with the rachis. It is continned up the ventral surface of the rachis, and forms a prominent spine below the place where the terminal autozooid is situated. Its length is about 39.5 mm .

The autozooids, five in number, are arranged bilaterally, but owing to the twisting in the rachis they seem at first sight to be irregular. The two lowest are larger than the others, and rise from the edges of the ventral surface, so that there is a little of the ventral surface exposed between them, while the two smaller appear to rise more from the dorsal surface, and have their bases closely approximated. On the ventral surface the siphonozooids are seeu on the small space exposed between the bases of the autozooids and on either side of the axis. On the dorsal surface they are arranged ahout the bases of the autozooids and on the sides of the axis, the middle line being apparently free. Where the siphonozooids occur the spicules seem to have arranged themselves so as to form a slight circular ridge around them. The length of the rachis is 11.5 mm., of an autozooid with expanded tentacles $12 \cdot 5 \mathrm{~mm}$., of the looly of an autozooid nearly 5.5 mm .

There do not appear to be any siphonozooids on the stalk.

The spicules of the antozooids are somewhat triangular in section, with one of the sides flatter than the others, and with a gramular appearance thronghout the whole length.

Locality : Station 118 ; $12^{\circ} 20^{\prime}$ N., $85^{\circ} 8^{\prime}$ E. ; 1803 fathoms.

Umbellula radiata, n. sp.
This species is represented ly a complete colony, 857 mm . in length.
The stalk is long, and has a large swelling at the lower end, which extends for a distance of about 213 mm . upwards. From this point the stalk gradually tapers till it reaches the begiming of the rachis, where it seems to run up the centre, and does not become evident on either of the surfaces. On the lower swelling, which has a diameter of 7 mm ., four prominent ribs are present, two of which can be traced thronghout the whole length of the stalk. The stalk at the upper end of the swollen portion has a diameter of only 1.75 mm .

The axis is roughly guadrangular, with the angles rounded off. On one of the sides in the lower portion a groove is present ; in the upper portion it becomes almost cylindrical.

The rachis is longer than usual, and bears a large number of antozooids, which are arranged in whorls. The lowest whorl has four.

The autozooids are $l \mathrm{mg}$ and slender ( $46 \times 2.5 \mathrm{~mm}$.), with moderately long tentacles; they are brownish in colom, with the upper portion almost black.

The tentacles are long and tapered, with one row of pimnles on each side. The pimules are short, rather blunt, and widely separated.

The surface of the antozooids and the tentacles is covered by a brownish layer, which is honeycombed in appearance, and easily rubbed off. On treating a portion of this with acid, no effervescence was observed.

The siphonozooids occupy the whole surface of the rachis between the autozooils; they are small, brownish, wart-like projections. On the swelling at the lower end of the stalk there are several smaller projections, which may be siphonozooids.

Among the typical autozooids there are two or three polyp-like bodies, 20 mm . in length by 4.5 mm . in width. Tentacles are represented by small blunt conieal projections, in one case with seven mimute pimmles present on each side. In these polyps the stomodienm and gastric filaments are short and simple, whereas in the typical antozooids they are long and convoluted.

No spicules were found either in the poly 1 s, the rachis, or the stem.
Locality: Amdamans; 490 fathoms.

Umbellula pendula, n. sp.
This species is represented hy one complete colony, which has a total length of 744 mm .

The stalk is very long, and has a large swelling at the basal enil, which extends for a considerable distance, nearly 170 mm . upwards. From this point, howerer, the stalk tapers gradually towards its upper end.

The axis is somewhat oval in section, and brownish in colour. Near the lower end it has a diameter of 1.9 mm ., but it tapers abruptly towards the base, where it ends in a short coil, and is thread-like. At the upper end it becomes cylindrical, and gradually tapers. It has a diameter of 0.75 mm . at a point just below the beginning of the rachis. In the lower part it is rigid, in the upper part it is tuite flexible.

The pendulons rachis is 55 mm . in length, and stretches on the concare side of the bent stalk as a thin membrane. In its lower part the prorachidial surface is marked by a stiff ridge, formed by the prolongation of the axis; thus it is somewhat bilateral in shape ; but this bilateral symmetry is soon lost, and a radial arrangement assumed.

The numerons long antozooids are arranged in irregular whorls. They may attain a length of 40 mm ., and have a basal width of 2.5 mm . There are long slender tentacles, with one row of pinnules on each side. The autozooids are ereany white in their lower parts; the dark bluish-black stomodrum shines through the upper part.

Siphonozooids are abundant, occurring all over the rachis, with the exception of the short ridge on the prorachidial surface of the lower part. They are small ( $0.2-0.3 \mathrm{~mm}$. in height), and appear as minute conieal projections on the surface.

Spicules are entirely absent, none being found either in the polyps, the rachis, or the stalk.

Locality: Andamans; 188-220 fathoms.

## Umbellula indica, n. sp.

This species is represented by a complete specimen, measuring 706 mm . in length.

The stalk tapers gradually from a little above its base to its junetion with the rachis. On the lower part there is a large swolling, which extends for a considerable distance up the stem. It has four wing-like projections, and is hollow. The lower part of the swelling is smooth, but the upper part is ronghener by the siphonozooids, which project like warts alove the stuface. The siphonozonids ean be traced almost up to the junction with the rachis.

The axis is quadrangular, with the sides slightly convex, and measures 2 mm .
in diameter near the base. From this point it tapers very guickly towards the hasal end, and hecomes quite thread-like and hook-shaper. Towards the uper end it tapers very gradually, and hecomes almost completely cylindrical near its junction with the portion contained in the rachis.
(On the lower part of the axis the emenchyma is fairly thick, and is teveloped into four wing-like fokls; on the mpper portion it is very thin, and rlocely attacher to the axis, lout the wing-like folls can he traced almost to the begiming of the machis.

The rachis seems to be radial in symmetry, its lower end forming a slender invertel conical portion, on which no autozooids, but numerous siphonozonids are found.

The antozooids are long and slender, with the lower part packed with ova. They are light in colour, and contrast with the lark huish-hlack colour of the upper portion, which is almost certainly due to the decomposed contents of the stomodeum. They are as much as 48 mm . in length by 3 mm . in width. The stomodrum and gastrie filaments usually extend for about 14 mm . In the upper portion the stomodrum is slightly convoluted, hut lower down it is merely wrinkled. The tentacles are long, slender, and tapering, with one row of delicate pointed pinnules on each side.

The siphonozooids cover the whole surface of the rachis not occupied by the autozooids. They are small projecting wart-like bodies, and in the parts not so directly subjecter to the action of the preserving fluid are slightly brownish in colonr. They are on an average 3.2 mm . in leight, and are slightly oval in shape.

No spicules are present in polyps, rachis, or stalk.
Locality : Andamans; 238-290 fathoms.

## Umbellula, sp. ?

The stalk is cylindrical, thin, 355 mm . in length. There is a distinet swelling at the lower end, quanlraugular in shape, with the edges prolonged into fine wing-like portions. The length of this enlargement is 68 mm . Its greatest brealth from the elges of the wings is about 2.5 mm ., but tapers gradually at looth ends, more gradually at the upper than at the lower end.

The stalk gradually tapers from the top of the enlargement, and varies in thickness from 1 mm . to 0.8 mm . Towards its npper end it gradually thickens and forms a plate-like structure continuous with the rachis and flattened laterally, thicker on the one surface than on the other, so that a cross section would appear somewhat wedge-shaped. This portion of the stalk, together with the rachis, has a hook shape in tro specimens, lut in the other two it is slightly curved towards the dorsal side. About half-way up the stalk there is a peculiar bend or knee in
all the specimens. The stalk is devoid of siphonozooids execpt at the junction with the rachis. It is yellowish in appearance, and has a distinct sarcosome.

The rachis is thin, and wedge-shaped, with a ridge. The autozooids appear to be irregularly arranged in the older forms, but in the younger they are bilateral. The rachis is covered with wart-like siphonozooils beneath the part bearing autozooids, and on the upper part between the bases of the antozooids. The ventral side of the rachis bears no antozooids, but on the dorsal surface there is little space left exposed. The autozooids are 10 mm . in length, and the tentacles 6 mm .

There are a few warty spicules of the usual three-edged shape.
Locality : Station $197 ; 9^{\circ} 34^{\prime} 57^{\prime \prime}$ N., $75^{\circ} 36^{\prime} 30^{\prime \prime}$ E.; 406 fathoms.

COMPARATIVE TAbLE OF

Name.	Stalk.	Axis.	Rachis.
U. durissimu, Kulliker.	Long, eylindrical, flexible, with a spindle-shaped enlargement at the lower end.	Nearly cylindrical.	A tat rhomboid expansion of the stalk.
U. giontheri, Kölliker.	Quadrangular, with many spindle-slaped enlargements.	Quadrangular.	Without inferior enlarge-ment-lilateral.
U. thomsoni, lioulliker.	Quadrangular, with wellcleveloped lower, but no upper enlargement.	Quadrangular, with excarated surfaces and rounded edges.	Indistinetly linateral.
U. lepfocutlis, Kïlliker.	Very thin.	Quadrangular, witl concave surfaces and blunt edges.	Bilateral.
U. simplex, Killiker.	Cylindrical, thin, witlı a moderately thick sarcosoma.	Quadrangular, with concave surfaces and rounded edges.	Decidedly bilateral.
U. hucleyi, Kolliker.	With long enlargement leelow.	Indistinctly quadrangular.	Indistinctly linateral.
U. corpenteri, Kiolliker.	Enlargement at inperend, contimuous, with rachis and lons enlargement at lower end.	Quadrangular, with deeply excavated surfaces and rounded edgen.	Indistinctly liateral.

SPECIES OF UMDELLULA.

Antozooids.	Siphonozooids.	Spicules.	Nutes.
Vary in number from three to nine, and have $n 0$ definite arrangement ; eight bands of spicules oecur on the wall, and these are continuted up the aboral surface of the tentacles.	Exceedingly numerous, minute ; cover the whole of the promehidial surface exeept a narrow median ridge, and extend in bands between the bases of the antozooids.	(c) Stalk-small rods or ellipses, with longitudinally arranged ribs formed of minute spine like processes ; (b) auto-zooids-(1) longer rods or ellipses, with fewer ribs; (2) long spindles, with rough jagged ends and minute longitudinal ribs.	The definite arrangement of spicules in eight row on the antozooid-wal does not seem to be of great specific moment Depth-Laccadives 1132 fathoms: "Scotia specimens, 1742 fathoms Japan, 565 fathoms.
Very large-alternate, 44 imm. long, with tentacles extended.	Tery numerous, , but leare at free line on buth the pro- and the meta-rachidial surface.	Numerus in every part of entis; needles threeedged, and granular at the end; 0.2-0.72 mm. in length, and 0.041 0.045 mm . in breadth.	Atlantic Ocean, a little N. of the Equator. Depth, 1850 fathoms.
Form a pendant bunch.	On pro- and meta-rachidial surfaces of the rachis; none on the stalk.	In all parts of sarcosoma.	Locality: North Atlantic Ocean, between Portugal and Madeira. Depth, 2125 fathoms.
Disposed alternately, $27-30 \mathrm{~mm}$, in length.	Scanty-ou raclis only.	In every part of the cutis. Those on the tentacles are disposed longitudionally; (a) stalk 0.11-0.18 mm. in length and $0.027-0.054 \mathrm{~mm}$. in breadth; (b) tentacles $0 \cdot 16-0 \cdot 21 \mathrm{mmm}$. long ; (c) antozooid, $0.43-0.54$ mm. long.	South-west of New Guinea. Depth, 2440 fathoms; near $U$. gïntheri.
Alternate, small, rather hard, four in number.	None.	Numerous in every part of the cutis. Threeedged and granulated at their ends; $0.1-0.18$ mm . long and 0.0270.054 mm . Iroad.	Between San Francisco and Yeddo. Depth, 2050 fathoms. (Evidently young.)
Form a cluster at end of stalk, with trace of a lilateral arrange ment, small, brown.	Numerous on whole stalk and between bases of autozooids, but none on the metarachidial side ol the rachis between the jolyps; all provided with a single tentacle.	None except in the end bulb of the stalk.	Locality: south of Yeddo. Depth, 565 fathoms.
Furm a rosette at the ent of the stalk, long, colunrless.	Nomerous on pro- and meta-rachidial sides of the rachis and along the whole stalk; all provided with one singly lranched tentacle.	Only in the lowest part of the stalk.	Soutli Polar Sea, sonthwest of Australia. Depth, 1975 fathoms.

COMPARATIVE TABLE OF

Name.	Stalk.	Axis.	Reachis.
U. magnifora, kolliker.	Long swelling below, and a Hattened and enrved enlargement at its upper end.	Quadrangnlar, with eoncave surfaces and romuded edges.	No distinct rachis.
U. linduhlii, Kolliker.	Short, somewhat spirallytwisterl, and bent in a large flat curve below the polyp-chaster.	Quadrangular, with rather deeply concave surfaces and ridge-like projecting edges.	In form of a polyp-cluster.
U. encrinut, Linn.	Upper part of stalk is twisted and bent in various ways; the whole stalk above the terminal swelling is turned like a spiral round its longitudimal axis.	Quadrangular, with deeply concave surfaces and rounded edges.	An apparently radiate langing cluster.
U. genieulutu, Studer.	Long, thin, slightly bent at the inferior end.	Quadrangular, surfaces concave.	Arises at a right ingle. Autozooids arranged in a rosette-slightly lilateral.
Umbelluta clurt, n. sp.	Long, Hexille, with an enlargement at lower end.	Almost cylindrical.	Short, and forms an irregular inverted cone flattened laterally.
U. intermerlia, n. sp.	Long, slender, flexible, quadrangulau in section; small enlargement at the base aml another spindle - shaped higher up.	Quadrangular in section, with a groove on each sicle.	Bilateral, ovoid, with a ridge on the prorachidial surface.
U. rosed, n. sp.	Long, flexible, quadrangular in section, marked by a groove on eacli surface ; two enlirgements.	Quadrilateral and deeply grooved on the sides.	Short, bilateral.

SPECIES OF UMDELLULA-contimed.

Autozooids.	Siphonozooids.	Spicules.	Notes.
Form a buncla at end of stalk without any frace of bilateral arrangement.	Numerons on the upper enlargement of the stalk at the base of the autoyooids, and also on the long swelling of the stalk, and in its neighbourhood.	Alsent.	South Sea, east of Kierguelen Island. Depth, 1600 fathoms.
Tentacles longer than the body. Autozooids $6-11 \mathrm{~mm}$. long, tentacles about 20 mm .	Form tongue-shaped areas between the polyps. Below the cluster they are disposed all round, but downwards they pass into a single row on each side.	Alsent except in the lower part of the stalk, where they are numerous ; 0.016 mm . $\times$ 0.0064 mm .	This species includes $U$. miniacere, Lindahl; $U$. pellide, Lindahl; $U$. !rucilis, Marshall ; and UT. bairdii, Verrill. Localities: Batliu's Bay, Davis Straits, Demmark Straits, Faroe ('hannel, North Greenland. Deptlis: 410, 1435, 568, 580-689, and 122 fathoms respectively.
Tentacles about same length as, or shorter than, the body.	Between the antozooids in tongue-shaped areas. Each has a ventral tentacle. Also over the whole stalk.	Very small spicules are found, but only in the lower end of the peduncle.	Danielssen links $U$.muegniflore, Kïll., with this slecies, but Jungersen keeps them as distinct species. Locality: Greenland and between Norway antl the Faroes. Depth, $412-4!98$ fathoms.
Tentacles are about 15 mm . Jong.	Occupy the space between the bases of tlie autozooids.	Absent.	China Ser. Lat. $21^{\circ} 19^{\prime} \mathrm{N}$., Jong. $106^{\circ} 24^{\prime}$ E. Depth, 680 fathoms.
Few and large, arranged in a whorl or bilaterally.	Small, not prominent ; occur all over the rachis.	(iv) Autozooids-(1) blunt rods covered by longitudinal ribs; (2) long rods with minnte tuleercles ; (b) coenenchymarods and quadriradiate forms.	Depth, 705 fatioms.
Five in number, one terminal ; of melium length, with long tentacles ; rigid, covered by spricules visible to the naked eye.	Small; occur in meshes in the spicular coverng all over the rachis except on the prorachidial ridge.	(11) Rachis-rough rods or luars, blunt at the ends and ridged ; ( ${ }^{1}$ ) stemsmaller and proportionally wider rods.	This species is intermediate between $U$. güntheri, Kioll., and $T^{\text {r. }}$ leptocuulis, Köll. Depth, 1912 fathoms.
One terminal and two pairs of lateral ; 5-6 mm . long, 2.5 mm . in diam., tentacles 6 mu. long.	On metarachiclial extending to the prorachidial surfaces.	( 1 ) Stalk - short, thick ellipses, with numerous: rits ; (i) antozooids-a few longer and proportionally thinner, rough ellipses.	Depth, IT 18 fathoms.

COMPARATIVE TABLE (OF

Name.	Stalk.	Axis.	Rachis.
U. purpuree, n. sp.	Long, tlexible, yuadrangular, with prominent edges; two distinct enlargements.	Quadrangular in section, with sides deeply grooved.	Short and swollen; bilateral.
U. clongata, 1. \$1.	large swelling at the hinse.	Quadrangular in section in lower part, cireular or uval higher up.	Long, radially symmetrieal.
(V. kollikeri, n. sp.	Quadraugular to oval in section : slight swelling at junction with rachis.	$\ldots$	Bilateral; prominent spine at origin of last alitozooil.
U. rentiuta, n. s1.	Lomg; large swelling it lower end with four brominent ribs.	Roughly yuadrangular in section.	Yery long.
U. pencule, 11. sp.	Very long, with large swelling at basal ent.	Oval in section, rellow in colous.	Pendulous; bilateral in lower prart, radial above.
U. indice, 11. S.	Tapers gradually from a large hollow terminal swelling with four "wings."	Quadrangular in section in stalk, circular in rachis.	Apparently radially symmetrieal.
U. sp.	('ylindrical, thin, with a terminal swelling with four wing-like projections; peculiar hend or knee abont half-way !1!	$\cdots$	Thin and wetge-shaped with a ridge.

SPECIES OF UMBELLULA-continued.


## Family Anthoptilit.e.

Anthoptitum murrayi, Käliker.
" decipiens, 1. sp.

## Anthoptilum murrayi, Kölliker:

To this species we refer two incomplete specimens without autozooids; the stronger of the two is 620 mm . in length, and on an average 4 mm . in breadth.

The axis is sulf-cyliulrical, radially lamellar, with two lateral canals. In the lower part it is more or less 'fuadrangular.

The stalk is short, and has a long spindle-shaped swelling at the lower end.
The rachis is long, more or less cylindrical in shape, marked by a broad groove on the prorachidial surface, and liy a marow groove on the opposite side.

There are no autozooids left on the rachis, but there are hollow oblong pitlike markings arranged in oblique transverse rows of two or three. It is possible that the auljacent edges of the autozooids may have been fused, and so formed rulimentary pimules. The siphonozooids cover the whole surface of the rachis not occupied by bases of the autozooids.

The ecenenchyma on the stalk is of mediun thickness, but on the rachis it is very thick.

There is no trace of spicules in the rachis, but small oval, quadrangular, or incipiently quadriradiate forms (alout 0.01 mm . in length) are present in the lower end of the stalk.

The specimen has a dull white colour, while that described by Kölliker was pale red with brown polyps and colourless stalk.

With reference to the alsence of autozooids, it is interesting to notice that Professor J. D. F. Gilchrist supplied the following note to Professor Hickson with reference to Authoptilum grandiflonum: "Some diftieulty was experienced in preventing the polyps from being washed off by the motion of the preservative Huid owing to the roll of the vessel" (Alcyonaria of the Cape of Good Hope, Part II., 1904, 1. 233).

If we are right in referring our specimen to $A$. murayi, the ocurrence of this species in the Indian ()eean is very interesting. It was recorded by the "Challenger" from Station 50, North Athantic, south of Halifax, $48^{\circ} 8^{\prime} \mathrm{N} ., 63^{\circ}$ $39^{\prime} \mathrm{W}$. ; also ly Verrill from the east coast of North America (American Journal of Serence (3), wol. xxviii. p. 220). On the European side it has been recorded from the Bay of Gascony, $45^{\circ} 57^{\prime} \mathrm{N}^{\prime}, 6^{\circ} 21^{\prime} \mathrm{W}^{\prime}$. ; and from the following four stations south of Icelaml : Station $83 ; 62^{\circ} 25^{\prime} \mathrm{N} ., 28^{\circ} 30^{\prime} \mathrm{W}$. Station $40 ; 62^{\circ} \mathrm{N}$, $21^{\circ} 36^{\prime} \mathrm{W}$. Station 65 ; $61^{\circ} 3: 33^{\prime} \mathrm{N} ., 19^{\circ} \mathrm{W}$. ; and sitation 47 ; $61^{\circ} 32^{\prime} \mathrm{N} ., 13^{\circ} 40^{\prime} \mathrm{W}$.

1, ocality: Station 104; $11122^{\prime} 47^{\prime \prime} \mathrm{N} ., 74^{\circ} 25^{\prime} 30^{\prime \prime} \mathrm{E} . ; 1000$ fathoms.

## Anthoptilum decipiens, n. sp. Plate VII. fig. 8.

This species is represented by a long substantial colony arising from a strong hasal expansion. The total length is 720 mm ., and the stem tapers from $4-2$ mm. in breadth.

The stalk is short and conical; it expands gradually from its junction with the rachis downwards, and has a large knob in the centre of the base. The base thus resembles a "tam o' shanter" ; or, to put it in another way, the stalk ends in a large knob, but before reaching the knob it expands into a large collar-like fold.

The rachis is very long, and is covered with a large number of autozooids in oblique rows, from three to eight in each row. The autozooids are fused for a very short distance upwards from their hase, thus producing distinct though rudimentary pinnules. These are placed at a very small angle to the long axis of the rachis, and the upper end reaches often to the pararachidial surface. Their arrangement is somewhat perplexing, as there is distinct overlapping. Two occur almost opposite one another, and a third distinctly overlaps their insertion.

The autozooids are rery long ( $10-25 \mathrm{~mm}$.$) , thin walled, and packed with$ reproductive bodies which shine through the thin walls and give the polyps an rppearance suggestive of fish-roe. (See Plate VII. fig. 8.)

The siphonozooils occur on the pararachidial and metarachidial surfaces, extending on to the bases of the rudimentary pinnules in small somewhat triangular areas insinuated between two adjacent autozooids. They also occur on the prorachiclial surface, with the exception of a narrow median strip.

The spicules of the cenenchyma at the lower end of the stalk are very minute rods ( 0.0056 mm . in length), which may lee collected together to form star-shaped groups.

There are no spicules on the rachis or on the antozooids.
The most noteworthy features of this species are:

1. The perfect though rudimentary pinnules.
2. The peculiar overlapping arrangement of the pimnules.
3. The shape of the basal expansion with its knob-like termination into which the end of the axis extends.

Locality : Station $284 ; 7^{\circ} 55^{\prime} \mathrm{N} ., 81^{\circ} 47^{\prime} \mathrm{E} . ; 506$ fathoms.

## Family Funiclulinid.e.

Subfamily Funiculininæ:
F'uniculina quarlrengularis (Pall.) = Leptoptilum grecrite, Kölliker.
Funiculina gracilis, и. sp.
Subfamily Starhyptilidie.
Stachyptilum maculatum, 11. sp.

## Subfamily Funiculininæ.

Funiculina quadrangularis (Pallas) $=$ Leptotitum gracile, Kölliker.
A broken colony, 358 mm . in length.
The axis is quadrangnlar in section, with deep grooves on three of the sides, in the lower part. It is 0.95 mm . in diameter, and tapers gradually to in delicate thread at the tip.

All the antozonids have fallen off, so that their arrangement camot be ascertained with certainty, but they seem to have occurred alternately in a single row on each side of the axis. Several detarhed antozooids are 7 mm . in length and 2 mm . in hreadth. Each has eight projecting apieal points formed of a number of small smooth limut rod-like spicules, 1.2 mm . in length, 0.038 mm . in diameter.

The autozooids are coloulless, but the dark brown contents of the stomodæum are seen through the walls.

We see no sutticient reason to separate this form from Leptoptilum gracile, though the autozooils in Kölliker's speeimens were only 3-4 mm. in length. Grieg and Jungersen have shown that Leptoptitum gracite is simply a stage in the life history of Funiculine quadrangulteris.

Locality : Bay of Bengal ; 753 fathoms. Previously recorded as Leptoptitum gracile from New Zealand. Funiculinu quadrangularis is recorded from North Sea, the Atlantic Ocean (on the European and American sides), the Mediterranean, ete.

Another delicate graceful specimen is referred to this species. It is complete. and has a total length of 49 mm ., of which the stalk oceupies 22 mm .

The colony is extremely delicate, the rachis differing from the stalk ouly by the presence of the autozooids.

The autozooids are arranged in twos almost at the same level, or one slightly above the other. 'They lie partly on the pararachidial, partly on the metarachidial surface. They stand almost at right angles to the surface of the stalk, or are directed slightly upwards. Between each pair of autozooids two small zooid-like structures are present, but these are undoubtedly young stages of autozooids.

The polyp-calyces have eight projecting points, each composed of a number of spicules. On the bodies of the calyces the spienles are arranged in an irregular mamer, but mostly transversely; underlying the transverse spicules there are eight narrow hands of longitudinally amanged spienles. These bands are formed in the following manner: each point divides into two sets of diverging spicules, each set then joins with the adjacent set of the nest point, and the two sets thus united form a band extending towards the base of the calyx.

The calyces are from $2-3.5 \mathrm{~mm}$. in height, and some of the younger autozooids between the others are from $1-1.5 \mathrm{~mm}$. in length. Their walls are very thin and translurent.

The menenchynal is thin and transparent, allowing the axis to shine through.

The spicules of the polyp-ealyees and cenenchyma are smontly fluted rods, perfectly tmasparent. Those of the stem are on an average 0.22 mm . in length by 0.015 mm . in breadth; those of the callyx wall are from 0.4 to 0.5 mm . in length by 0.15 mm . in hreadth.

The colony is colourless, except for the stomodeum, which is backish-hrown in colour.

This speeimen agrees elosely with the specimen deseribed by Kölliker.
Loeality: Station 235 ; $14^{\circ} 13^{\prime} \mathrm{N} ., 93^{\circ} 40^{\prime}$ E. ; 370-419 fathoms.

Funiculina gracilis, n. sp. Plate VII. fig. 10 ; Plate JX. fig. 4.
A large number of specimens, mostly broken and slightly damaged, are plaeed in this speeies. A representative example was 350 mm . in length, with a breadth of rachis about $1 \% 25 \mathrm{~mm}$.

It consists of a stalk ( 100 mm .) and an elongated quadrilateral rachis. There is no difference between the stalk and rachis, apart from the presence of the autozooids.

The axis is quadraugular with hollow siles, thens giving the stem, which varies from $0.7-1.5 \mathrm{~mm}$. in diameter, a quadrangular grooved appearance. Towards the basal end the stem diminishes and then swells, and forms a somewhat club-shaped enlargement which is nsually slightly curved.

The rachis is quadrilateral and long, having the autozooils arranged in groups, eath group consisting of two irregular rows of three to four polyps.

The calyees are produced into eight sharp teeth- the tips of bands of spicules. On the upper part of the calyx, the spicules lie for the most part Iongitudinally, but towards the basal portion they are more irregular and are often obliquely transverse. Numerons siphonozooid-like bodies, white in colour in marked contrast to the dull grey of the autozooids, occur among the bases of the latter, principally in a somewhat broken single line on the metarachidial surface. They are furnished with eight short lobe-like projeetions at the tip, and rise to a height of 1 mm .

The height of the autozooid calyces varies from 3-5 mm., and the diameter from $1-1.5 \mathrm{~mm}$.

The colour of the rachis is yellowish to whitish, the basal portion of the calyces is also whitish, while the upper portion is bluish-hlack to a dull grey.

The ora are fairly abundant, and embryos were fomm with a slightly brown outer coating and a yellow interior with a large cavity.

The spicules are long slemrler fluter rods, blunt or pointed at the ends, and often slightly curved at one end. The following measurements were taken of length and breadtlo in millimetres:

$$
0.8 \times 0.04 ; 0.7 \times 0.035 ; 0.4 \times 0.02
$$

It is possible that the form which we have identified with Leptoptilum gracile, Kolliker, and referved to Fumimulina quadrangularis, Pallas, is really the young stage of this new species of Fumiculina.

Locality : Station $197 ; 9^{\circ} 34^{\prime} 57^{\prime \prime}$ N., $75^{\circ} 36^{\prime} 30^{\prime \prime}$ E. ; 406 fathoms.

Subfamily Stachyptilidæ.
Stachyptilum maculatum, n. sp. Plate VII. figs. 5 and 9 ; Plate IX. fig. 16.
This species is represented by one complete elub-shaped specimen, 62 mm . in height.

The rachis is club-shaped, gradually increasing in diameter and reaching its maximm a little below the apex. It presents a rather striking appearance owing to the presence of brown siphonozooids on the surface not occupied by antozooids.

The autozooils are manged in ten oblicue rows on each side, each row consisting of $3-4$ polyps. They are fairly large, and capable of eomplete retraction; they show no spicules in their thim walls. The teutacles are of median length, and gradually taper to the distal end. They have one row of $12-14$ short blunt pinnules on each side.

The siphonozooids form slight hrown projections on the smface, and appear as eight-rayed stars. They vary in diameter from $0 \cdot 2-0 \cdot 3 \mathrm{~mm}$, and the larger individuals are slightly oval. They cover all the smface of the rachis not occmpied by the autozooids, and seem also to occur in two grooves that run up the rachis. These grooves on the rachis may be due to contraction in the preserving fluid.

The spicules are rod-like, with jagged ends, or four- to five-rayed forms. They vary in length from $0.1-0.16 \mathrm{~mm}$., and in lreadth from $0.025-0.04 \mathrm{~mm}$.

This speeies differs from those previously deseribed in the greater variety of spicules, in having more of the rachis covered, and in the absence of papilla at the upper end of the stalk.

Locality: Station $213 ; 21^{\circ} 25^{\prime} \mathrm{N} ., 68^{\circ} 02^{\prime} 30^{\prime \prime} \mathrm{E} . ; 137-131$ fathoms.

## 

Pavonaria willemoësii, Kölliker = Microptilum willemoësï, Kölliker.
A broken specimen with a total length of 116.5 mm ., of which the stalk ocmpies 33 mm . thens leaving a long rachis. The axis is eylimtrical, from $0.35-$ 0.4 mm . in diameter. 'The diameter of the stalk is $0.4-0.5 \mathrm{~mm}$. and it is eylindrical just below the origin of the rachis. The ecenenchyma is thin, and allows the axis to shine through on the prorachiclial surface, but is considerably thicker on the metarachidial surface.

The thirty-six antozooids are arranged alternately in one row on each side of the rachis. They vary from $2-3.2 \mathrm{~mm}$. in height. Between these there are some smaller polyps interspersed, and there are $3-4$ small polyps helow the lowest welldeveloped antozooid. The calyces are prominent, furnished with two strong points ou the abaxial side which are separated from the axial side by a deep indentation. The spienles are arranged longitudinally on the abaxial and axial surfaces, but on the latter they tend to be placed transversely at the edges. On the lateral surfaces the spicules are fewer in number, and some are directed at right angles to the stalk, so that they eross the others which are placed longitndinally.

The spieules are in the form of needles, varying from $05-1 \mathrm{~mm}$. in length on the rachis and the autozooids, but on the stalk they are very small ( $0.12-0.15 \mathrm{~mm}$.).

On the small immature polyps the spieules are arranged as on the mature forms, thus producing a small conical projection.

No siphonozooids are distinguishable. Jungersen seems to have showu conclusively that Microptitum is simply a young stage of Pavonaria; and as our specimen agrees closely with Dicroptilum willemoësii, Kölliker, we have recorded it under the title Pavonaria willemoësii.

Locality: Andaman Sea; 650 fathoms.
Geoyraphical Distribution.-This genus is widely distriluted ; P. finmarchica has been recorded from the coast of Norway, from the vicinity of Iceland, and from the east coast of North America, at depths varying from 60-980 fathoms; $P$. africance (Studer) from the Atlantic and the West Coast of Africa, $10^{\circ} 129^{\prime} \mathrm{N} ., 17^{\circ}$ $23 \cdot 5^{\prime} \mathrm{W} . ;$. sp. from the Japanese Seas and the Gulf of Korea, and Microptilum willemoësii from Station 235 , south of Yeddo, $34^{\circ} 7^{\prime} \mathrm{N} ., 138^{\circ}$ E., at a depth of 565 fathoms. Another species has been recorded from Behring 1sland, and two more, $P$. dofleinii and $P$. californica, from the Califormian coast.

Family Pexvatclide.
Subfamily Pennatulinæ.
Pematuld indica, n. sp.
,. rencris, 11. sp.
". splendens, n. sp.
,, pendula, n. sp.
Subfamily Pteroëididæ.
Pteroëdiles triradiata, и. sp.
Sulsfamily Pemuatulinæ.
Pennatula indica, n. sp. Plate V111. fig. 1.
Several beautiful specimens, the largest of which ( 1 and B) are 150 and 105 mm . in length.

The stalk is long and straight, whitish in colour, with a pinkish tinge. Its length is about half that of the entire colony ( 64 mm . in $\mathrm{A} \operatorname{and} 49.5 \mathrm{~mm}$. in B ). It shows a mumber of swellings, three in $B$, the smaller, and four in $A$, the larger specimen. There is a very small swelling near the base, a second slightly ligger, and almost touching the first, a third abrout the middle point of the stalk, and in the largest specimen (A), a fourth swelling at a point three-fourths the length from the hase.

The following measurements were taken :


Owing to the contraction of the cienenchyma the tip of the axis projects at the basal end. It is thin and thread-like, and is coiled several times into a sort of spiral.

The crimson-lake colour of the rachis and pinnules presents a striking contrast to the whitish or pinkish colour of the stalk. The lower pinnules, varying in number from $3-5$, are small and rudimentary in all the specimens, the lowest heing recognisable only as a band of slightly darker spicules lying across the sides of the rachis. The fully developed pimules are long, narrow, sword-shaped, with calyces on their erlges. They are covered by long spicules arranged parallel to the length and closely packed together, forming a complete casing. The calyces stand not at right angles to the pinnule, but at a small angle, and have their apices directed towards the distal end. Each calyx is formed of longitudinally disposed spicules similar to those of the pinnule, and has its apex divided into eight points, each of which is made up of at least two spicules. The calyces reach a height of $4 \cdot 1 \mathrm{~mm}$. The autozooids are capable of complete retraction within the calyces. Each tentacle has on its aboral surface a broad hand of spicules which are arranged more or less longitudinally.

Along the prorachirtial surface there is a broad band free from autozooids. This band is divided into two smaller bands ly a long narrow furrow which extends the whole length of the rachis. The band is closely covered by mumerous siphonozooids, eacli of which has a small calyx which is closely atpressed to the surface of the rachis, and thus appears only as a platform of spines lying at an acute angle to the surface, with the apex directed towards the tip of the rachis. On the metarachiclial surface siphonozooids are also present, forming a single row on each side of the middle line. They are not so closely pressed against the surface. The
general cenenchyma is fairly thick, and has abundant spienles. The spicules are long slender fluted rods, varying from $0.15-3 \mathrm{~mm}$. in length, and from $0.01-0.13$ mm. in width.

Both ova and embryos were found in the pimules.
Localities: Station $260 ; 8^{\circ} 28^{\prime} 15^{\prime \prime} \mathrm{N} ., 76^{\circ} 07^{\prime} \mathrm{E} . ; 487$ fathoms. Station 323; $16^{\circ} 25^{\prime}$ N., $93^{\circ} 43^{\prime} 30^{\prime \prime}$ E. ; 463 fathoms. Station $230 ; 7^{\circ} 40^{\prime}$ N., $70^{\circ} 00^{\prime} 52^{\prime \prime}$ E.; 824 fathoms.

Pennatula veneris, 11. sp. Plate VIII. fig. 8.
Three magnificent specimens, with a beantiful colour scheme. The stalk and rachis are dark red, the pinmules are transparent, the autozooids are red with white tentacles.

The short stalk ends in a swollen hase, and just below its junction with the raehis there is a short thick spindle-shaped enlargement.

The rachis, which is many times longer than the stalk, tapers gradually towards the tip, where it becomes thread-like and loses itself in the base of a small piumule. On the metarachidial surface a deep broad groove extends the whole length ; the prorachidial surface tends to lee romded.

The pinnules are mumerous, and are placed on the pararachidial surfaces, and present a striking contrast to the darker colomred rachis. They are placed almost parallel to the axis of the rachis, and show considerahle variation in size, the best developed pinnules being abont half-way up the rachis. A well-developed pinnule is triangular in shape with a broad base, and one side, the prorachidial edge, is slightly enrved, while the metarachidial edge bears the antozooids. In the younger stages of the pimmles the terminal autozooid is very long, and separated from the rest by a considerable distance, and the peculiar appearance thus resulting is accentuated in still younger stages by the whole pimmle being whip-like, and even resembling a flattened thread with only one, the terminal, autozooid. The pinnules are transparent, and contain abundant ora.

The autozooids stand in a single row on the elge of the pinnule. They have short stalks, and are expanded at the oral end into a somewhat hell-like shape. There are no projecting spines. The colouring of the polyp is striking. The short stalk is translneent in the lower part, then a brownish-yellow tinge begins to appear, the brown colour becomes gradnally intensified in the body of the polyp until just below the origin of the tentacles, where it becomes a deep red. The booly wall is marked loy eight lines. Towards the base of the pinnule the polyps decrease in size, and finally appear as a row of small white warts on the erlge. The tentacles are short, and have one row of pinmules on each side. On the aboral surface they have a narrow hand of small red spicules extending up the middle line to the tip. The tentacles curve inwards when at rest, and then they appear like a small white dome marked by eight hands of red which radiate from the apea.

The siphonozooids occur primeipally on the pararachidial surfaces in long narrow bands between the pimules, the upper end of each land reaching for a short distance on to the metarachidial surface, and the lower end for a similar distance on to the opposite side. The midule of each hand of zooids is marked at the middle point by a slight hroalening in the upper part of the rachis, or loy a slight S-shaped twist in the lower pat of the rachis.

The following measmements were taken :

(The unit after the plus sign in the nmber of antozooids indicates the number of immature forms towards the lase of the pinmules.)

In specimen No. II. the terminal autozooid of a pinnule may reach a length of ! mmm .

The spieules of the antozooids are all of one shape, flattish bars rounded at the ends and constricted at the middle. They are from 0.04 to 0.045 mm . in length by 0.02 to 0.015 in breadth. They vary in colour from brownish to red.

The spicules of the stem are similar in form to those of the antozooids, and of similar dimensions ( $0.04 \times 0.02$ ).

Locality: N.-IV. of Calicut; 100 fathoms.

Pennatula splendens, n. sp. Plate VIII. fig. 5.
The shor't stalk ends in a slight swelling, and is somewhat eurved. Just below the rachis there is a spindle-shaped enlargement, which has a diameter of 7 mm .

The rachis ( 272 mm .) is forr times longer than the stalk: ( 68 mm .), dark red in the lower part, and whitish to greyish in the upper part. On the metarachidial surface there is a groove ; the prorachidial surface tends to be rounded.

The numerous pinules lie almost parallel to the long axis of the rachis, on the pararachinlial surfaces. They are triangular, with a greatly elongated base. The pimmules are somewhat varied in slape at the dillerent parts of the rachis, mond smaller ame namower in the lower part, but never showing any trace of the whip-like development seen in Pennatula veneris. In colour also they show variation, the younger pinmules being similar in colour to the stalk, while the botter developed pinuules are greyish to dirty white.

The autozooids are densely crowded on the metarachidial edge of the piunule. They are somewhat bell-shaped, and stand on a short peduncle, which in the case of the autozooids on the upper pinnules passes through the same colour scheme as in those of Pernatula veneris, but in the lower pimmles the peduncles are uniformly dark red. There are no projecting spines or points in the autozooids, which are arranged so elosely that they appear to he in two or three rows. The tentacles are short, white in colour, and have no hand of red spicules on the aboral surface.

The siphonozooids form broad bands which extend upwards hetween the pinnules on the pararachidial surfaces, but their lower ends extend so far down as to form a distinct baud on the prorachidial margin of the lateral surfaces.

The following measurements were taken :
Breadth of rachis near base, 3 mm . ; near tip, 1.8 mm .
Length of well-developed pinuule, 23-25 mmm.
Breadth, 12 mm . ; about 6 mm . near base and tip.
Number of autozooids, $51+10$ (19 near base, 45 near tip).
The spicules of the pinnules and autozooids are somewhat flattened ovals or ellipses, brownish in colour ; the following measurements were taken of length and breadth iu millimetres:

$$
0.04 \times 0.02 ; 0.03 \times 0.04 ; 0.029 \times 0.04
$$

They are not so much constricted at the middle as in Pennatula veneris.
This species differs from Pennatula veneris in the following details, although they show a remarkable superfieial resemblance.

1. The lower pinnules are different in shape, not having any trace of the whiplike development of the terminal autozooid.
2. The colour of the pinnules is different, the lower being dark red, the upper and more developed being white to greyish.
3. There are no bands of red spicules on the aboral surfaces of the tentacles.
4. The lower ends of the siphonozooid-bands fuse and form a continuous band or strip on the prorachidial margin of the pararachidial surfaces.

Locality : Station $239 ; 11^{\circ} 49^{\prime} 30^{\prime \prime}$ N., $92^{\circ} 55^{\prime}$ E.; 55 fathoms.

Pennatula pendula, n. sp. Plate I'Il. fig. 1 ; Plate VIII. figs. 7 and 10.
This species, which in some ways resembles $P$. murrayi, Kölliker, is represented by numerous specimens.

The usual colour of the stalk and rachis is dark red, but in some the rachis is pinkish helow, then almost pure white, and then coral red. The pinnules are usually white, but some are coral red. The autozooids are red, their tentacles white, the siphonozooids are yellowish.

The axis is cylindrical above, quadrangular below; at the lower end two of the angles are produced into wing-like expansions.

The trmslucent pimnules, of which there may be over fifty pairs, are elongated triangles or lanceolate. The calyces have eight projecting spines.

The siphonozooids are in tro rows on the pararachidial surfaces.
As there are many specimens, we give several sets of measurements to show quantitative differences.

Length of Whole.	I.ength of Stalk.	Brearlth of Enlargement of Stalk.	Length of Rachis.	Breadth of Kachis.	Breadtly of Base of Pinnules.	Polyps on Pinnules.
256 mm .	100 mm .	$\begin{aligned} & 3 \mathrm{~mm} . \\ & \text { Breadth of } \\ & \text { stalk, } \quad 1 \cdot 2 \\ & \text { mm. } \end{aligned}$	156 mm .	$\begin{aligned} & \text { Near base, } 1.5 \\ & \text { mm. Near } \\ & \text { tip, } 1.8 \mathrm{~mm} . \end{aligned}$		Near base, 8. Near tip, 11. About halfway up, 10.
229 mm 1 l	$50 \mathrm{~mm} .$	3 mm. Breadth of stalk, 1 • 4 mm.	179 mm .	$\begin{aligned} & \text { Near base, } 2.8 \\ & \text { mm. Near } \\ & \text { tip, } 1.5 \mathrm{~mm} \text {. } \end{aligned}$	$\begin{aligned} & \text { Near base, } 2 \cdot 6 \\ & \text { mm. Near } \\ & \text { tip, } 3 \text { mm. } \\ & \text { About half- } \\ & \text { way np, } \\ & \text { mm. } \end{aligned}$	Near base, 7. Near tip, 1011. About half-way u!, 9.
240 mm .	122 mm .	2 mm . Breadth of stalk, $1 \cdot 2$ mim.	$\begin{gathered} 118 \mathrm{~mm} .53 \\ \text { pairs of } \\ \text { pinnules. } \end{gathered}$	$\begin{aligned} & \text { Near base, } 2 \\ & \mathrm{~mm} \text {. Near } \\ & \text { tip, } 1.5 \mathrm{~mm} \text {. } \end{aligned}$	Near base, 4 mm . Near tip, 3.5 mm. About half-way np, $5 \cdot 2 \mathrm{~mm}$.	Near luasc, 9. Near tip, 7. About halfway up, 10.

Localities: Andamans; $238-290$ fathoms. Station $235 ; 14^{\circ} 13^{\prime} \mathrm{N} ., 93^{\circ} 40^{\prime} \mathrm{E}$; 370-419 fathoms. Station $240 ; 11^{\circ} 32^{\prime}$ N., $92^{\circ} 46^{\prime}$ E. ; 194 fathoms.

## Suhfamily Pteroëilidæ.

Pteroëides triradiata, 11. sp.
At the base of the stalk there is a slight swelling, 8 mm . in length and 3 mm . in breadth, from the end of which the hare axis projects and ends in a hook-shaped portion.

At a distance of 15 mm . from the end of the stalk a large swelling ( 4.8 mm .
in breadth) arises and extends up the stalk, gradually tapering till the stalk has reaehed its normal thickness at the origin of the lowest pimnules.

The rachis is nearly 30 mm . in breadth. The bare prorachidial surface is $2 \cdot 3 \mathrm{~mm}$. across. The three large and well-developed rays in the pinumles give the specimen a very stiff and spiny appearance. The pinnules may be said to be sword-shaped, and vary in width from $2-3 \mathrm{~mm}$. The prorachidial edge is occupied by the strong first ray, which consists of about three long spicules. The presence of only three rays is a distinctive feature of this species.

The following measurements were taken of the two specimens:


Locality : Station $259 ; 10^{\circ} 08^{\prime} 43^{\prime \prime} \mathrm{N} ., 75^{\circ} 33^{\prime} 30^{\prime \prime}$ E.; 56 fathoms.

## REFERENCES TO LITERATURE.

1888. Agassiz, A.-Characteristic Dcep-Sea Types-Polyps. Three Cruises of the " Blake," vol. ii. 1p. 142-148.
1889. Alder, J.-Descriptions of some new and rare Zoojhytes of the Coast of Northmberland. Ann. Mag. Nat. 1 list. 3 ser. ix.
1890. Asiworth, J. II.-The Stomodæum, Mesenterial filaments and Findoderm of Xenia. Proc. Roy. Soc. London, lxiii. pp. 443-446.
1891. Ibid.-The Structure of Xenia hicksoni, n. sp, with some Observations on lleteroxenia elisebethre Küliker. Quart. Journ. Nier. Sci. xlii. pp. 245-304.
1892. IbId.-Report on the Neniidre collected by Dr. Willey. Willey's Zool. Results, pt. iv. pp. $509-530$, pls. lii. and liii.
1893. Blanville. - Manuel d'Actinologie on de Zoophytologie.
1894. l'leeker, P.-Sur les espéces nouvelles de Pennatulina, etc. Rev. et Mag. Zool. 2 ser. xiv. pp. 38-42.
1895. Ibid.-Naturkund. Tijdsehr. Batav. xx.
1896. Bonanscir.-De quibusdam Animalibus Marinis, p. 112 (Funiculina).
1897. Bourne, G. C.- A Treatise of Zoology. Edited hy E. Ray Lankester. Part ii. The Anthozoa, pp. 1-80.
1898. Ibid.-On the Structure and Affinities of Meliopora coerulea (Pallas), with some observations on Xenia and IIeteroxenia. Phil. Trans. clxxxvi.
1899. Ibid.-On the genns Lemmalia, also branching systems of Alcyonacea. Trans. Linn. Soe. London, 2 ser. vii. pp. 521-538.
1900. Brüggemann, F.-Corals anl Polyps of the West Coast of America. Amer. Naturalist, v. Pp. 306 and 307.
1901. Ibin.-An aceount of the J'etrological, Botanical, and Zoologieal Collections made in Kerguelen's Land and Rodriguez: Corals. Phil. Trans, elxviii.
1902. Jirundin, J. A. Z.-Alcyonarien ans der Sammlung der Zool. Mus. in Upsala. Svenska Vet.Akad. Ilandl. xxii. pt. iv. No. 3, pp. I-22, 2 pls.
1903. Butor, P.—Sur lorganisation de la Vérétille (Veretillum cynomorium (Pall.) Cuv. var. stylifera Kioll.). Arch. Zool. exp. Notes (3), ix. pp. 49-50, 7 figs.
1904. Buncharır, E-Alcyonaceen von Thursday Fs. und von Amboina. Denkschr. med.-nat. Ges. Jena, pp. 656-668, pls. liv.-lvii.
1905. Carter, H. J.-Specinens from Gulf of Manaar. Ann. Mag. Nat. Hist. 5 ser. vol. v.
1906. Cavolini, Pir.-Abhandlungen iiber Pflanzenthiero des Mittelmeeres. Uebersetzt von W. Sprengel. Nürnberg.
1907. Ciudn, C.-Aus dem Tiefen les Weltmeeres. 2te Aufl.
1908. Cuvier.-Rigne Animal.
1909. Dana, J. D.-Zoophytes. United States Exploring Expedition. Philatelphia, vii.
1910. Danielssen, F.-Forh. Vidensk. Selsk. Chiristiania, p. 251.
1911. Ibin.-The Norwegian North-Atlantic lixpetition, 1876-1878. Tol. v. Alcyonida, pp. 1-147, 23 pls.
1912. Dendy, A.-On Virgularia gracillima in Lyttleton FFarbour. Trans. New Zealand Institnte, xxiv. pp. 256-257.
1913. Duchassaing et Michelottr-Memoire sur les Coralliaires des Antilles. Mem. R. Acal. Sci. Torino, 2 ser. xix. pr. 279-365, 10 pls.
1914. Ibid.-Supplement, ibid. xxiii. pp. $97-206,11 \mathrm{pls}$.
1915. Ehrenberg, C. G.- Beitrïge zur Kenntniss der Korallenthiere des rothen Meeres. Abh. Akad. Wiss. Berlin, 1832, 1. 284.
1916. Imi.-Die Korallenthiere des rothen Meeres. Berlin, p. 156.
1917. Eisen.-Bilrag til Kännedomen on Pennatulidslagtet Renilla. Svenska Vet.-Akad. IIandl. xiii.
1918. Ellis, J.-Phil. Trans. liii. pl. 423-425.
1919. Ellis and Solaxder. - The Natural History of many curions and uncommon Zoophytes. London.
1920. Esper, E. J.-Die Pflanzenthiere in Abbildungen nebst Beschreibungen. Nürnberg, 17911797, 4 vols.
1921. Fisher, Wm. I.-On a new species of Alcyonoid Pulyp. Proc. Calif. Acad. Nat. Sci, v. p. $418,1 \mathrm{l}$ 1.
1922. Forbes.-Ann. Mag. Nat. Ilist. xiv. pp. 413-414 (Funiculina).
1923. Ibid.-Johnston's History of 1ritish Zoophytes. 2nd edition.
1924. Forskål.-Descriptiones animalium quæ in itinere orientali observavit Havniæ.
1925. Fowler, G. H.-Gn a new Pematula from the Baliamas. Proc. Zool. Soc. London, pp. $135-140,11$. vi.
1926. Ibin.-On two Sea-pens of the family Veretillite from the Madras Mnseum. Proc. Zool. Soc. London, pp. 376-379, pl. xxii.
1927. Gabb, Was. M.-Description of two new species of Pennatulidæ from the Pacific Coast of the United States. Proc. Calif. Acarl. Nat. Sci. ii. pp. 166-167.
1928. Ibid.-Description of a new species of Tirgularia (gracilis) from the Coast of California. Proc. Calif. Acad. Nat. Sci. iii. pt. ii. p. 120.
1929. Genth, C.-Ueber Solenogorgia tubulosa (eine neue Gattung der Gorgoniden). Zeitschr.f. wiss, Zool. xvii. pp. 429-442, 3 pls.
1930. Germanos, N. K.-Gorgonaceen von Ternate. Abh. Senek. Nat. Ges. xxiii. Heft l, pp. 145-184, 4 pls.
1931. Gray, J. E.-Proc. Zool. Soc. London, 1835.
1932. Ibid.-Acanthogorgia hirsuta. Proc. Zool. Soc. London, pl. iii. fig. 2.
1933. Ibid.-(1) Characters of a new genus of Corals (Nidalia) ; (2) Deseription of a new genus of Gorgonide (Aeanthogorgia). Proc. Zool. Soc. Iondon, xxv.
1934. Ibid.-Description of some new genera of Lithophytes. Proc. Zool. Soc. London, xxvii. pp. 479-486.
1935. Ibid.-On the arrangement of Zoophytes with pinnated tentacles. Ann. Mag. Nat. Hist. 3 ser. iv.
1936. Ibid. - Description of a new Coral from Madeira. Proc. Zool. Soc. London, xxriii. pp. 393-394, 1 pl.
1937. Ibid.-Am. Mag. Nat. Hist. 3 ser. vii. pp. 214-215.
1938. Ib1D.-(1) Description of some new species of Spongoiles and of an allied genus Morchellana in British Museum. Proc. Zool. Soc. London, pp. 27-31; (2) Description of two new Genera of Zooplytes (Solenocanlon and Jellonella), pr. $34-37$; (3) Notes on some specimens of Claviform Pemnatulide (Veretillea) in British Museum, pp. 31-34.
1939. Lbid.-Notice of a second species of Paragorgia from Maleira. Ann. Mag. Nat. IIist. 3 ser. x.
1940. Ibir.-Notice on Rhodoplyton, a new genus of Alcyonilæ. Proc. Zool. Soc. Lonton, pp. 705-707.
1941. Ibin.-Additional note on Corallium johnsoni. Proc. Zool. Soc. London, 1p. 125-127.
1942. Ibid.-(1) Note on a new Japanese Coral (Isis gregorii), pp. 263-264; (2) 1)cscriptions of some new genera and species of Aleyonoid Corals in the British Museum, lip. 441-445. Aun. Mag. Nat. list. 4 ser. ii.
 p. 96. Lok. cit. iii. 1P. 21-25 and pr. 117-131.
1943. IbIr.-Notes on sume new grmea and species of Alcyonoid Corals in the lititish Museum. Loc. cit. v. Pp. 405-408.
1944. Iman.-Catalogne of the Lithophytes or Stony Conts in the Collection of the British Masem, Lomilon.
1945. Ibno-Cataloghe of Sea-Pens or P'matnlariila in the Cullection of the liritish Muscum, lomion.
1946. Hmb.- Heyonoid Corals and Sponges from the Gulf of Suez. Ann. Mag. Nat. Hist. \& ser. ix. 119. 481-48:.
1947. Ibin.-The Clusterel Sea Poly' Imbellula. Loc. cit. 4 ser. x. p. 151.
1948. Ibin.- Notes on Comals from South and Antarctie: Seas. Proc. Zool. Suc. London, pl-$741-747,3 \mathrm{pls}$.
1949. Im,-Corallium. Loc. rit. p. 223.
1950. (iray and Ciarter.-On Spongoies conglomeratus and a mew genus of Fleshy Aleyonoids (Euslerides). Ann. Mag. Nat. llist. 4 ser. iv. pp. 360-361.
1951. Cikier, J. A.-Bidrag til de Norske Aleyonarier. Tergen's Musenm, Aarsber. 1. 126, 9 pls.
1952. Imm.-To nye Conularier fra den Norske-Kyst. Lergen's Museum, Aarsber.
1953. Ibrin.—Oversigt Norges l'enatalider. Lergen's Museum, Aarsber. No. i. 1. 118.
1954. (irure, E.-Description of a new Coral (Lithoprimmoa aretica). Ann. Mag. Nat. Hist. 3 ser. xii. 陁. 166-167.
1955. Haacke, W.--Zur Physiologie der Anthozoen. Zool. (rarten, xavii. p. 284 et seq.
1956. Haecrel, E.- Arabische Korallen, Berlin.
1957. Hargitt and Rogers.-The Alcyomaria of Portorico. U.S. Fish. Comm. Jinll. vol. ii.
1958. IEetund, T. Finige Muriceiden ior Gattungen Aeanthogorgia, l'aramuricea, and Ehinomuricea in Zoologischen Museum tler Unis. Upsala. Svenska Vet.-Akad. Handl. xvi. pt. iv. No. 6, pp. 1-18, 3 pls.
1959. Ilerdman, W. A.-(In the Structure of Sarcolictyon. Iroc. Roy. Phys. Soc. Edinburgh, vol. viii.
1960. llerklots, J. A.-Description de denx especes de Pematulilen des mers de la Chine. Nederl. Tijdschr. Dierk. 1 Jaarg. pp. 31-34.
1961. Ibrn.-Polypiers nageurs on Pematulites, p. 30, 7 pls.
1962. Hickson, S. J.-On the Ciliatel Cronve (Siphonoglyphe) in the Stomorleum of Aleyonarians. l'uc. Roy. Soc. London, xxxv. No. 226; also Phil. Trans. elxxiv. pt. iii.
1963. Ib11,-Quart. Journ. Micr. S(i. xxiii. p. 5.56 (Tubipora).
1964. Ibm. - I lievision of the Genera of the Alcyonaria Stolonifera with one new genus and several new species. Trans. Zool. Sue. London, xiii. 1. 325.
1965. Th1d. - Anatomy of Aleyonium cligitatum. Quart. Jomm. Micr. Sci. xxxvii. 1. 343.
1966. Ibin,-Aleyonaria and Hydrocoralline of the Cape of Good llope. Part i. Marine lnvestigations in South Africa, i. No. 5, pp. 67-96, 6 pls.
1967. lbid.-Aleyonium. Mem. Liverpool Marine Biol. Committec. London.
1968. Tbid.-Aleyonaria. Southern Cress Collection (Alcyonitm peseleri), p. 293.
1969. Trm.-Report of the Southport Mecting of the liritish Association (lolymurhism in Pennatula mumayi). Science, Mviii. p. 61 t.
1970. Junw.-The Aleyonaria of the Cape of Gool IInpe. J'art ii. Narine luvestigations in Sonth Africa, vol. iii. 1p. 21I-239, 3 pls.
1971. Ibin.- Aleyonaria of the Naldives, Fauna abrl Geogr. Maldives and Larealives, ii. pt. 1, 1p. $473-500$, pls. xxio. aml xxvii.

1972. Hickson, S. J.-(1) a new species of Corallium from Timor. K. Akad. Wetensch. Amstertam.
1973. Hickson, S. J., and Hiles, Isa L.-The Stolonifera and Alcyonacea collected by Dr. Willey in New Britain, etc. Willey's Zool. Results, pt. iv. pp. 493-508, 2 pls.
1974. Hhgans, H. 11.-Korallen in Sicilien. Natur. Lxvi. (N. F. xxxiv.) p. 268.
1975. Ibid.-The Red Coral of Commerce-Corallium rubrum. Proc. Lit. Phil. Soc. Liverpool, No. 33, pp. xlviii-li.
1976. Hiles, Isa L.-The Gorgonacea cullected by Dr. Willey. Willey's Zool. Results, pt. ii. PI. 195-206, 2 pls.
1977. Ibid.-Keport on the Gorgonacean Corals collected ly M1. J. Stanley Gardiner at Funafuti. l'roc. Zool. Soc. London, pp. 46-52, 4 pls.
1978. Holm, O.-Beiträge zur Kemntniss der Alcyonidengattung Spongodes. Zool. Jahrb. viii. pp. 8-57, 2 pls.
1979. Ibid. - Weiteres iiber Nephthya mind Spongoles. Results of the Swedish Zoological Expedition to Egypt and the White Nile.
1980. Horn, G. H.-Descriptions of three new species of Gorgonidie. Proc. Acad. Nat. Sci. Philadelphia, p. 233.
1981. Hubrecht, A.-On a new Pennatulid from the Japanese Sea (Echinoptilum macintoshii). Proc. Zool. Soc. London.
1982. Jonnston, G.-A History of British Zorphytes, Edinhurgh, 2nd ed. 1847.
1983. Jounson, J. Y.-Description of a second species of Acanthogorgia from Madeira, Proc. Zool. Soc. London, pp. 296-298.
I861. Ibib.-Notes on the Sea Anemones of Madeira (Cornularia atlantica, n. sp.). Loc. cif. ]. 298.
1984. Ibid.-Descriptions of two Corals from Madeira, Mrimmoa and Mopsea. Loc. cit. pp. 245-246.
1985. Ibid.-Description of a new species of Juncella. Loc. cit. pp. 505-506.
1986. IBID.-Description of a new species of Flexible Coral belonging to the genus Jumcella obtainer at Madeira (J. Hagellum). Amn. Mag. Nat. Hist. 3 ser. xiv. p. 142.
1987. Jungersen, H. F. ľ-Kara-Havets Alcyonider. Kjöbenhaven, Dijmplına Togtets Zoologisk-- Botanishe Udbytte, pp. 375-380, 2 pls.
1988. Ibid.-Zeitschr. f. wiss. Zool. xlvii. p. 626 (Development of Yennatula).
1989. Ibid.-Ceratocaulon wandeli en ny Nordisk Alcyonide. Naturhist. Forening Kjöbenhaven.
1990. Ibid.-The Danish Ingolf Expedition Pematulida, v. pt. i. 3 pls. I chart and 3 figs. in text.
1991. Kent, IT. Saylle.-On two new genera of Alcyonoid Corals taken in the recent expedition of the Jacht Norna olf the west coast of Spain and Portugal. Quart. Journ. Micr. Sci. x. P1. $397-399,1 \mathrm{pl}$.
1992. Ibid.-On the Calcareous Spicula of the Corgonacear; their modification of form and the importance of their characters as a basis for generic and specific diagnosis. Monthly Micr. Journ. iii.
1993. Kishinouye, K.-Preliminary Note on the Corallidæ of Japan. Zool. Anzeig. xxvi. pp. 623-626.
1994. Klunzinger, C. F.-Die Korallthiere des rothen Meeres. Part i. Die Alcyonarien und Malacodermen, p. 59, 4 pls.
1995. Kner.-Ueber Virgularia multiflora, n. sp., aus der Familie der Seefedern. Terh. zool.-bot. Ges. Wien.
1996. Koch, G. von.-Anatomie der Orgelkoralle (Tubijora hemprichii). Jena.
1997. Ibid.-Das Skelett der Alcyonarien. Morph. Jahrb. iv.
1998. Ibir.-Anatomie der Clavularia prolifera, n. sp., nebst einigen vergleichenden Bemerkungen. Morph. Jahrb. vii. p. 462 ff.
188\%. Ibid.-Vorlaifige Mittheilungen uiber die Gorgonien von Neapel uml uber die Entwickelung der Gorgonia verrucosa. MIT. Zool. Stat. Neapel, iii. p. 537 fi.
1999. Kocn, G. vox.--Nene Anthozonn aus dem Golf von Guinea. Marhurg (Itephritus= Bellonella).
2000. IB1T,-Die Alcyonaceen des (iolfes von Neapel. IIT. Zool. Stat. Neapel, ix. Heft 4.
2001. Imin.-Fanna und Flora des Golfes von Neapel. I ie Gorgonilen, xr. p. 99, 10 pls.
2002. 1bid.-Die systematische Stellung von Sympodium coralloiles. Zool. Jahrl. v. p. 76.
2003. Kölliker, A.-Icones 11istiologica, pp. 131-142, 8 pls.
2004. 1bmp.-leiträge zur Kenntniss der Polypen. (1) Ueber der (rattung Solanderia, pp. 11-16; (2) Semperina rubra, eine neue Gattung, 1p. 17-20; (3) Ueber cine neme Alcyonarien Pseudogorgia godeffroyi. Verh. Plhys-Med. Ges. Wuirzburg, N. F. ii. p. 22, 2 pls. ; Sitzber. für 1870 , pp. vii-viii.
2005. Ibid.-Anatomische systematische Beschreibung der Alcyonarien. Abth. i.

2006. IbID.-Die Penmatuliden Umbellula und zwei nene Typen der Alcyonarien. Festschrift Phys-Med. Ges. W'iurzurg, $11^{1}$. 6-23, $2 p^{11 / s}$.
18i5. 1bid.-Ueber den Tau und der systematische Stellung der Gattung Umbellularia. Verlh. Phys-Med. (ies. Wïzhurg, N. F. viii. pp. 13-18.
2007. 1bid.- Penuatulida of "Challenger," vol. i.
2008. Koren and Daxielssen.-Nyt. Mag. Naturvidensk.
2009. Ibid.-Forhandl. Vidensk. Selsk. Clmistiania.
2010. Ibmb.-Bidrag til de ved den norske kyst levende Pennatuliders Naturhistorie. Fanaa littoralis norvegicie, 3 IIeft, p1. 82-103.
2011. Ibid.- Bergen's Museum Nye Alcyonider, Gorgonider, og Pemmatulider tilhorende Norges Fauna. liergen, p. 38,13 pls.
2012. 1bid.-The Norwegian North-Atlantic Expedition, 1876-1878, Zoology—Pennatulida, p. 70. 13 pls. and 1 map.
2013. Kowalevsky, A. O.-Untersuchungen iiber die Entwickelung der Coelenteraten. Nachr. Ges. Fieunde Naturk, Anthrop. Ethnogr. Moskau. x. (Russian).
2014. 1bid.-Zur Entwickelungsgesehichte der Alcyoniden Sympodium coralloides und Clavularia crassa. Zool. Anzeig. ii. pp. 491-493.
2015. Kowalevsky et Marion.-Documents pour l'histoire embryogénique des Alcyonaires. Ann. Mus. Marseille-Zool. i. Mém. 4.
2016. Krukenberf, C. Fr. W.-Vergleichend-physiologische Studien. Abth. v. Heidelberg; also Abth. i. 1880.
2017. Kükenthal, W.-Alcyonaceen von Ternate. Zool. Anzeig. Nos. 488 and 489.
2018. lbid.-Alcyonaceen von Ternate. Abh. Senakenberg. Nat. Ges. xxiii. Heft I, 4 pls.
2019. Ibid.-Diagnosen neuer Aleyonarien aus der Ausbeute der Dentschen Tiefsee Expedition Zool. Anzeig. xxv. pp. 229-303.
2020. Ibid.-Versuch einer Revision der Aleyonarien. I. Die Familie der Xeniiden. Zool. Jahrb. xv. pp. 635-662.
2021. Ibld.- Versuch einer Revision der Alcyonarien. 1I. Die lamilie der Nephthyiden, 1 Teil. Zool. Jahrb. xix. pp. 99-172.
2022. IbID.-Ueber einige Korallenthiere des Roten Neeres. Festschrift von E. Ilacekel, pp. 33-58, 2 pls .
2023. Ibid.-Ueber eine nene Nephthyidengattung aus dem siidatlantischen Ocean. Zool. Anzeig. xxvi. pp. 272-275.
2024. 1bid.-Diagnosen neuer Alcyonarien aus der Ausbeute der I beutsehen Tiefsee Expedition. Zool. Anzeig. xxv. pp. 299-303, also p. 596 (Umbellula).
2025. Lbin.-Versuch ciner Levision der Alcyonarien. II. Die Familie der Nephthyiden, 2 Teil. Zool. Jahrb. wxxi. jp. 503-726, 7 pls, and 61 figs.
2026. Lacaze. Duthere.-Histoire naturelle des Corail. l'aris.
2027. Lacaze-Duthiers.-Couleur der Alcyonaires. Comptes Rendus, lix. p. 252.
2028. Ibid.-Des Sexes cliez Alcyonaires. Comptes liendus, lx. pp. 840-843.
2029. Ibid.-Note sur la présence des Kophobelemnon dans les eaux de Banyuls. Comptes Rendus, cxii. pp. 1294-1297.
2030. 1brd.-Coralliaires du Golfe dı Lion, Alcyonaires. Arch. Zool. Exp. (3) viii. pp. 353-462, 5 pls.
2031. Lamarck.-listoire naturelle des Animaux sans Vertebres. Yol. ii. P'aris.
2032. Lamouroux.-Genus Telesto. Bull. Soc. Philom. Paris.
2033. TBid.-Histoire des Polypiers coralligènes flexibles. Caen.
2034. Ibid.- Exposition methodique des genres de l'ordre des Polypiers. Paris.
2035. Lindaile, J.-Umbellula from Greenland. Amn. Mag. Nat. Hist. 4 ser. xiii. p. 258.
2036. Ibid.-Sur les Ombellules. Journ. d. Zool. iv. pp. 440-442, 1 pl.
2037. Ibid.-Om Pennatulid-Slägtet Umbellula (Cur.). Svenska Vet. Akad. Hancll. xiii. No. 3, 3 pls.
2038. Linné.-Systema Nature. T. i. ed. x.
2039. Marenzellfr.-Die Cœlenteraten, Echinodermen und Würmer der K. K. Oesterr.-Ung. Nordpol-Exp. Wien.
2040. Ibid.-Ueber die Sarcophytum benannten Alcyoniden, Zool. Jahrl. i. pp. $341-368,1 \mathrm{pl}$.
2041. Ibid.-Denkschr. Akad. Wiss. Wien, xxxv.
2042. Marshall, A. Mlless.-Report on the Pematulida dredged by 1I.M.S. "Triton." Trans. Roy. Soc. Edinburgh, xxxii. pt. 1, p. 140.
2043. Marsilall and Marshall.-Report on the Oban Pematulida, p. 57, pls. 4.
2044. Marshall and Fowler.-Report on the Pennatulida of the Mergui Archipelago. Journ. Linn. Soc. London, xxi. pp. 267-286.
2045. Ibid.-Report on Pennatulida dredged by H.M.S. "Porcupine." Trans. Roy. Soc. Edinburgh, xxiii. p. 453.
2046. Mar, W.-Alcyonaceen von Ostspitzbergen. Nach der Ausbeute Prof. Willy Kükenthal's und Dr. Alfred Walter's in Jahr. 1889. Zool. Jahrb. xi.
2047. Ibid.-Beiträge zur Systematik und Chorologie der Alcyonaceen. Jenaische Zeitschr. Naturwiss. xxiii. p. 190, 5 pls.
2048. Ibid.-Faiuna Arctica.
2049. Menneking, F .-Ueber die Anorlnung der Schuppen und das Kanalsystem bei Stachyoles ambigua (Stud.), Caligorgia flabellum (Elurbg.), Calyptrophora agassizii (Stud.), Amphilaphis abietina (Stud.), und Thouarella variabilis (Stud.). Arch. Naturges. 1xxi. pp. 245-266, 2 pls.
2050. Milne-Edwards.-Mémoire sur un nouveau genre de la famille des Alcyoniens. Ann. Sci. Nat. ser. 2, iv.
2051. Ibid.-Recherches anatomiques, etc., Alcyonides, Alcyons proprement dits. Ann. Sci. Nat. 2 ser. iv. 5 pls.
2052. Milne-Edwards and Haime.-Histoire naturelle des Coralliaires ou Polypes proprement dits. 3 vols. 1857-1860.
2053. Müblus, K.-Neue Gorgoniden des naturhist. Museums zu llamburg. Nov. act. Acad. Leop.-Carol. xxix. ; also separately, Jema, 1861, p. 12, 3 pls.
2054. Ibid.-Ueber eine Hornkoralle Verncella gua lelupensis. Schr. naturwiss. Ver. SchleswigHolstein, Bd. i. Heft 2, pp. 204-206.
2055. Moroff, Th.-Einige neue Pennatuliden aus der Miuchener Sammlung. Zool. Anzeig. xxy. pp. 579-582.
Ibid.-Stulien iiber Octocorallien. Zool. Jahrl. xvii. plp. 363-410, pls. xiv.-xviii.
1bid.-Einige neue Japanische Grorgonaceen in der Miunchener Sammlung. Zoul. Anzeig. xxv. pp. 582-584.
2056. Moseley, H. N.-On the structure and relations of the Alcyonarian Heliopra cœrulea. Pliil. Trans. elxvi. pt. i. p. 91.
2057. Moseley, II. N.-Report on certain Hydroid, Alcyonarian, and Madreporarian Corals ןrocured during the voyage of 11.M.s. "Challenger." 1873-1876, "Challenger" Reports, vol. ii. (Heliopora, Sarcophytum.)
2058. Mons, En. L.-Description of a Virgularian Actinozoon (Osteacella). Proc. Zool. Soc. London, pp. $730-732$.
2059. Mïller, O. F.-Zoologia Danica.
2060. Pallas.-Elenchus Zoophytormm, p. 434.
2061. 1'feffelk, G.-Zur Fauna von Siid-Georgien. Jahrb. Hamburg Wiss. Anst. Jahrg. ri. 2 Hälfte, 49.
2062. Pillilippl.-Arch. Naturges. viii.
2063. Joulitales, I. F.-Contributions to the Fama of the Gulf Stream at great depths. 1st and 2nd series. Bull. Mus. Comp. Zool. Harvard, vol. i. pp. 103-120, 121-142.
2064. Pratt, E. M.-The Alcyonaria of the Mahlives. Fanna and Geography of the Maldives and Lacradive Archiplelagos, vol. ii. pt. i. pp. $503-535$, pls. xxviii.- xxxi.
2065. 1bid.-The digestive organs of the Alcyonaria and their relation to the Mesogleal Cell-plexus. Quart. Jour. Micr. Sci. xlix. pp. 327-362, 3 pls.
2066. 1bid.-The Mesoglual Cells of Alcyonium (Preliminary Account). Zool. Anzeig. xxv. 1] $545-548,3$ fig.
2067. Iblı,—On some Alcyonidæ. Ceylon Pearl Oyster Report, Supp. Rep. xix. pp. 24i268, 3 pls .
2068. Provot, G.-Review of May: La Faune des Alcyonaires arcti¢nes, subarctiques et antarctiques. Fauna Aretica, i. pp. 379-408.
2069. Pütter, H. - Alcyonaceen des Breslaner Museums. Zool. Jalırb., Band xiii. Heft 5, 2 pls .
2070. Quoy et Gamarn.-Toyage de l'Astrolabe. Zoopliytes iv. Paris.
2071. Richiardi.-Monografia della Famiglia dei Pemnatularii. Bologna.
2072. Rinley, Stuart O.-Contributions to the knowledge of the Alcyonaria. Part i. Ann. Mag. Nat. Hist. 5 ser. ix. pp. 125-133, 1 1 l.
2073. Ibin.-Part ii. Loc. cit. 5 ser. ix. pp. 184-193.
2074. Ibid.-Proc. Zool. Soc. London, p. 231, etc.
2075. Ibri,- The Coral-fauna of Ceylon, with descriptions of new species. Ann. Mag. Nat. Hist. 5 ser. xi. 1p. 250-262.
2076. Ibin.-Report on the Aleyoniid and Gorgoniid Alcyomaria of the Mergui Archipelago, collected for the Indian Museum. Jour. Limn. Soc. London, xxi. pp. 223-247, 2 pls.
2077. 1311.-Zoological Collections of II.M.S.' "Alert." London.
2078. Rotle, L.-Resultats scientifique de la Campagne du "Caudan" lans le golfe de Gascogne. Amn. de l'Université de Lyon, xxvi.
2079. Ibin.-Anthwzon Alcyonaria (Clavularia), "Southern Cross" Collection. London, p1. 290-293, pl. x]vii. figs. 1-3.
2080. Sars.-Fama Littoralis Norvegix, i.
2081. Savigny.-Description de l'Égypte. List. Nat. Suppl. i., Paris.
2082. Scnexk, A.-Clavulariiden, Xuiiden und Alcyoniden von Ternate. Abh. Senckenberg. Nat. Ges. xxiii. Iteft 1, pp. 41-80, 3 pls.
2083. Simpsox, Jas. J.-A New Cavernularid from Ceylon (Fusticularia). Ann. Mag. Nat. Hist. 7 ser. xv. pp. 561-565, 1 pl .
1905 . Ibid.-Igaricoides, a new type of Siphonogorgid Alcyonarian. Znol. Anzeig. xxix. pp. 263-271, 19 figs.
2084. 1bid.-The Structure of Isis hip]ruris Limnæus. Jour. Linn. Soc. Zoology, London, vol. xxxvii. pp. 421-434, 1 pl .
2085. Stearne, li. S. C.--Description of a new species of Alyonoid Polyp (Pavonaria hlakei). San Francisco Mining and Scientific Press.
2086. Ibid.-Description of a new genus and species of Alcyonoid Polyp (Verrilliablakei). Proc. Calif. Acad. Sci. v. pp. I47-149. Amer. Jour. Sc. 3 ser. vii. pp. 68-70.
2087. Ibid.-Remarks on a new Alcyonoid Polyp from Burrard's Inlet. Proc. Calif. Acad. Sci. v. p]. $7-12$.
2088. Ibid.-Verrillia blakei or Halipteris blakei. Amer. Naturalist, xvi. p. 55.
2089. Strmpson.-Deseription of some of the marine Invertebrates in the Chinese and Japanese Seas. Proc. Acad. Nat. Sci. Philadelphia, vii.
2090. Studer, Ta.-Ueber Bau und Entwicklung des Achse von Gorgonia bartholomi. Mrt. nat. Ges. Bern. [1. $85-97,3 \mathrm{pls}$.
2091. Lrid.-Solenocaulon. Monatsber. Preuss. Akad. Wiss. Tierlin, p. 668.
2092. Ibin.-Uebersicht der Anthozoa Alcyonaria welche während der Reise S. M. S. "Gazelle" um die Erde gesammelt wurden. Monatsher. Akud. Wiss. Merlin, [1p. 632-688, 5 pls.
2093. Ibid.-Yersuch eines Systems der Mcyonaria. Areh. Naturges. liii. pp. 1-74, 1 pl.
2094. Ibid.-On some new species of the Genus Spongodes from the Pluilippine Is. and the Japanese Seas. Ann. Mag. Nat. Hist. pp. 69-72.
2095. Ibid.-Supplementary Report on Alcyonaria of "Challenger," vol. xxxii.
2096. Ib1d.-Cas de Fissiparite chez un Aleyonaire. Tull. Soc. Zool. France, xvi. Paris.
2097. Iblid.-Note preliminaire sur les Alcyonaires: Report on Dreflging operations of Steamer "Albatross." Bull. Mus. Comp. Zool. IIarvard, xxr. p1. 53-69.
2098. Ibid.-Alcyonarien aus der Sammlung des Naturhist. Museums in Liibeck. MT. Geogr. Ges. und des Naturhist. Museums. Liibeck, 2 ser. Ileft 7 h. $R$.
2099. Ibid.-Alcyonaires provenant des Campagnes de l'Hirondelle: Resultats des Campagnes scientifiques du Prince de Nomaco. Fasc. xx. p. 64, 11 pls.
2100. Targont-Tozzetti, A.-Nota intorno ad alenni forme di Alcionari e di Gorgonacei, etc. Atti Soc. Ital. Sci. Nat. Mus. Milano, xv. pp. 453 - 459.
2101. Templeton.-Descriptions of a few Invertebrated Animals obtained at the Isle de France. Trans. Zool. Soc. London, vol. ii.
2102. Thomson, J. Arthur.-Ceylon Pearl Oyster Report; Alcyonaria. Supllementary Report, xxvii. pp. 167-186, I pl.
2103. Thomeon, J. A., and Ilenderson, IV. D.-Aleyonaria; Ceylon Pearl Oyster Fisheries Report. Royal Society, London, pp. 271-328, 6 pls.
2104. Ibid.-Preliminary Notice of the Deep-Sea Alcyonaria collected in the Indian Ocean. Ann. Mag. Nat. Hist., 7 ser. xv. pp. 547-557.
2105. Thonson, J. A., and Ritchie, J.-The Aleyonarians of the Seottish National Antaretic Expedition. Trans. Roy. Soc. Edinburgh, xli. pp. 85 I- 860,2 pls.
2106. Thurstos, E.- Notes on the P'earl, etc., Fishenies of the Gulf of Manaar. Govermment Central Musenm, Madras.
Yalenciennes.-MSS. coll. du Mus. Jardin des I'lantes, Pais.
2107. Ibid.-Extrait d'une mouographie de la famille des Gorgonides de la classe des Polypes. Comptes Rendus, xli.
2108. Verrinh, A. E.-Notice of a Primnoa from St. George's Mank. Proc. liswex Inst. iii. M. 127-129.
2109. Imm.-List of the Polyps and Curals (sent by the Museum of Comparative Zoology to other institutions in exchange), with amotations. Bull. Mus. Cimu. Zool. Harvard, i. No. 3, p. 29.
2110. Ibid.-Classification of I'olyps. (Proc.) Communicat. Essex Instit. iv. Sakm.
2111. Ibin.-Lissogorgia, n. sp. Proc. Buston Soc. Nat. Hist. x. pp. 22, 23.
2112. Lbid.-On the Polyps and Corals of Pamana. Proc. Boston Soc. Nat. Hist. x. pp. 323-333.
2113. Vermid, A. E-Synopsis of Polyps and Corals of N. Pacific Expelition. Part ii. Aleyonaria. (Proc.) Commmicat. Essex Instit. vol. iv.
2114. Ibid.-Revision of the 1'olypi of Eastern Coast of U.S. Anerica. Mem. Boston Soc. Nat. Mist. i. pp. 1-45.
2115. Ibns.-Critical Remarks on the Lalcyonoid Polyps in the Museum of Yale College, with deseriptions of new Genera. Amer. Journ. Sei. 2 ser. xlv. Pl. 411-416.
2116. Ibid.-Loc, cit. 2 ser, xlvi. pp. 143, 144.
2117. Ibid.-Loc. cit. 2 ser. xIvii. p. 286.
2118. Ibid.-Loc. cit. 2 ser. xlviii. M, 419, 420.
2119. Ibid.-Loc. cit. 2 ser. xlix. pp. 370-375.
2120. Ibid.-Loc. cit. 3 ser. iii.
2121. Ibid.-Loc. cit. 3 ser. vii.
2122. Ibid.-Notice of recent additions to the marine fauna of the Eastern Coast of N. America. Loc. cit. 3 ser. xvi.
2123. Ibid.-Loc. cit. 3 ser. xvii.

188:. Ibin,-Notice of the remarkable marine fanna occupying the outer banks of the Southern Coast of New England. Loe. cit. xxiii.
1878. Ibit-Description of a new species of Paragorgia (pacifica). Canad. Naturalist, viii. p. 476.
1883. Ibid.-Rep. U.S. Comm, of Fish and Fisheries.
1883. Ibnn.-Report on the Anthozoa and on some additional species dredged by the "Blake" in 1877-1879, and by the I.S. Fish Commission Steamer" Fish-Hawk" in 1880-1882. Bull. Mus. Comp. Zool. Harvard, xi. No. 1.
1902. Ibid.-Trans. Commect. Aeal. xi. (Eunicea atra, Verrucella grandis).
1902. Versluys, J.-Siboga Expeditie Monograhie, xiii. Die Gorgoniden der Siboga Expedition. 1. Chrysogorgiidre, pp. 117, 170 figs.
1906. Ibı.-Jets over Zoogeographie, naar aarleidung von de Marine Fanna von den oost-indischen Archipel. Handb. Nedertand Nat. Congr. Aarnhem, pp. 490-511.
1906. Ibrd.-Siboga-Expeditie Monographie, xiii. (a). Die Gorgoniden der Siboga-Expedition, ii. Iie Primmoide, p. 183,10 pls. 178 figs. and 1 map.
1888. Viguler, C.-F́tudes sur les animanx inférieurs de la baie d'Alger. Arch. Zool. Exper. 2 ser. vi. pl. 351-373, 2 pls. (Fascicularia)
1897. Whatelegge, Th.-The Alcyonaria of Funafuti, pt. ii. Mem. Australian Mus. iii. pt. 5, Nov. 17, pp. 307-320, 2 pls.
1883. Whlson, E. B.-The llevelopment of Renilla. Plil. Trans. elxxiv. p. 723 et seq.
1884. 1Bin.-The Mesenterial Filaments of the Mleyonaria. MT. Zool. Stat. Neapel, v.
1902. Ibid.-Notes on Merogony and regeneration in Renilla. Biol. Mull. iv. pp. 215-226, 4 figs.

186\%. Wrigat, E. P.-On the new genus of Aleyonidse (Hartea elegans). Proc. Dublin Microscop. Club, p. G, 1 pl.
1865. 1bid.—On a new gemus of Alcyonidæ (Hartea elegans). Quart. Journ. Micr. Sci. r. pp. 213-217.
1869. IBm.- On a new gemus of Gorgonida (Keratoisis). Ann. Mag. Nat. 1list. 4 ser. iii. pp. $23-27$.
1869. 1bn.-Notes on the Animal of the Organpipe Coral (Tubipora musica). Amn. Mag. Nat. llist. 4 ser. iii.
1886. Ibid.-On a new genus of Alcyonida, 1 pl.
1889. Wright, E. P', and Stuner, 'lh.-Report on the Scientific liesults of the voyage of H.M.S. "Challenger." Aleyonaria, vol. xxxi.
1889. Ibid.-Areh. Naturges. liii.

# EXPLANATION OF PLATES. 

## Plate 1.

Fig. 1. Sarcophytum aherrans, n. sp. Stalked Colony without basal attachment. Slightly enlarged ( $\times 1 \frac{1}{2}$ ).
" ?. Sarcoplytum aberrans, n. sp. Excrusting Colony, (a) portion enlarged ( $\times 1_{3}^{1}$ ), showing part of the spiral bare streak, at one place the conenchyma overarching it, at another the cœonenchyma completely surrounding the support; (b) distal end of an autozooid showing the arrangement of the pinnules on the tentacles; (c) colony reduced ( $\frac{1}{3}$ n. s.) in size showing the incrusting habit and the projecting siliceous support.
,, 3. Surcophytum ayaricoides, n. sp. (Nat. size.) Note the characteristic antozooils; the siphomozooicls (represented by white spots) are much more numerous than in the figure.
,, 4. Spongoles alcocki, n. sp. ( $\times 15$ ). Two polyps showing the single projecting spicule of the Stuitzbüudel.
, 5. Purayorgia splendens, n. sp. (Nat. size.) Note the characteristic clusters of atuzooids.
, 6. Keroönles lioreni, Wright and Stuler $(\times 10)$. Small portion of a twig.
, 7. Keroïdes Foreni, Wright and Studer. Colony nat. size.
, 8. Wuricella bengalensis, n. sp. Small portion enlarged ( $\times 20$ ). Note the large size of the spicules of the conenchyma.
., 9. Pleurocorallium variabile, n. sp. Small portion enlarged ( $\times 8$ ) showing the arenaceons conenchyma and the stellate appearance of the retracted polyps.
10. Juncella elongata, Pallas. Small portion enlarged ( $\times 4$ ).

## Plate 11.

Fig. 1. Stuchyodes allmani, Wright and Studer. Axis of a colony to slow mode of branching. (Nat. size.)
.. 2. Acanthogorgia aspera, Pourtales. Colony nat. size.
" 3. Chrysogorgia flexilis, Wright and Studer. Colony showing branching and arrangement of polyps.
4. Chrysogoryia irreyularis, n. sp. Part of a colony to show the indefinite mode of branching.
, 5. ( $a$ and $b$ ) Stachyodes allmani, Wright and Studer. Obverse and reverse views of a small portion of a twig enlarged.
6. Sympodium indicum, n. sp. Portion enlarged showing burrowing polychat worn.
7. Sympodium incrustans, n. sp. Part enlarged to show the furrowing of the polyps and alsu stages in retraction.

## Plate 111.

Fig. 1. Piotoptilum medium, n. sp. Part enlarged. Note the inregular margins of the calyces.
," 2. Thouarella moselpyi, var. spicata, n. Portion of colony nat. size showing the more of branching.
, 3. Paramuricea indira, n. sp. Part enlarget to show the markedly spinose character of the conenchyma.

Fig, 1. Thonarella mosleyi, var. spirata, n. Portion enlarged $(\times 20)$. Note the spines on the preopercular scales.
,. S. Lepmongoryite ropritli, Wright and Stuler. (a) Small portion of colony nat. size; (b) part cularged $(\times 15)$ showing the dense amature and a partially retracted polyp.
6. Chrysogoryite infica, n. s1. ( $\times 11 \mathrm{j}$ ). To show mode of branching and arrangement of polyps.
". i. Aramptonorina bebrycointes, var. robusta, n. Fragment nat. size.
.. A. Acamptnyoryiue belrygoieles, var. rolusta, n. Twig enlarged ( $\times 10$ ). Note the short and cylindrical polyps and the almost horizontal operculnm.

## Plate IV.

F1s. 1. Ifemïnles grucilis, Whitelegge. Portion of colony nat. size.
" こ. Keroüchs graritis, Whitelegge. Part of twig enlarged ( $\times 10$ ). Note the large and regularly arranged spicules.
.. 3. Kerö̈tles !rucilis, Whitelegge. Portion of main stem enlarged ( $\times 10$ ) showing the smaller and more indefinitely arranced spicules.
,. 4. Parisis indica, n. sp. Branch nat. size.
.. 5. Parisis indica, n. sp. l'art of axis enlarged showing the clusters of epizoic Patythoa.
,. 6. Sympotium tenue, и1. sp. Colony $\left(\times 1 \frac{1}{2}\right)$ showing the support of siliceous sponge spicules.
, 7. Distichoptilum fromile, Verrill. Part enlarged $(\times 10)$. Note the small scarcely projecting polyps.
,. 8. I'trisis intica, n. sp. Lasal portion ( $\times 1 \frac{1}{2}$ ) showing the disc of attachment.
. 9. Parixis inctica, n. sp. I'art of a branch enlarged ( $\times 1 \frac{1}{2}$ ). Contrast the proportions of norle and internole with those in fig. $s$.
.. 10. Chironpplatha macrospurulata, n. s1. Terminal portion enlarged ( $\times 12$ ). Note the enormous spinulles of the conenchyma.
., 11. Suberoyorgia liollitieri, var', ceglonensis, Thomson. Branch nat. size.
"12. Suberoyngia kitlilieri, var. cellonensis, Thomson. Portion enlarged ( $\times 10$ ).

## Plate V.

Fig. 1. Acanthomuricea ramosa, n. g. et sp. Terminal twig enlarged ( $\times 10$ ). Side to which the polyps are , lirected.
", 2. Stereartuthia indica, n. g. et sp. Part enlarged ( $\times 10$ ).
, 3. Acamptoforgia circium, n. sp. Twig ( $\times 2$ ). Note the spinose appearance.
., 4. Arantlomurirea ramosa, 11. g. et sp. Reverse sitle of fig. 1.
,5. Umhellula rosea, n. sp. Rachis nat. size.
6. Pleurocorallium rarialite, n. sp. Portion enlarged ( $\times 12$ ). Note the arenaccous appearance of the crenenchyma and the stellate form of the polyps.
, T. .funcelle miniarea, n. sp. Colony nat. size. Note gall.
" \&. Acanthomurice ramosa, n. g. et sp. Iranch ( $\times 1 \frac{1}{2}$ ).
9. I'wagoryia splemlens, n. sp. Branclı nat. size.
10. Astrogoryia mum, n. sp. Terminal portion of twig $(\times 10)$.
". 11. Aris spinosa, n. sp. I'art of twig enlarged $(\times 14)$. Note the difference in the spiculation of contignous portinns ; also the enormons plate-like spicules.
12. Inncella miniacea, n. sp. Part enlarged $(\times 12)$ showing the eharacteristic polyps.
13. Stenella liorrila, n. sp. Terminal twig enlarged $(\times 12)$. Note the rugose appearance.
14. Paraforyia splentoms, n. sp. Cluster of antozooids enlarged; also showing the arrangement of the siphonozooids.
"15. A'anthofor!iat aspera, Pourtales. Side and end view of polyps $(\times 10)$.

## Plate VI.

Fif. 1. Thesioinles inermis, n. g. et sp. Part of colony nat. size.
", 2. Thesioinles inermis, n. g. et sp. Portion enlarged $(\times 6)$. Note the peculiar tentacles.
3. Chrysogorgia rlichotoma, n. sp. Axis nat. size to show mode of branching.
4. Acamptoyorgire lielnycoirles, von Koch. Branch ( $\times 2$ ).
5. Icomptogoryia belnymines, von Koch. Terminal twig enlarged ( $\times 10$ ).
6. Ceratoisis gracilis, n. sp. Part enlarged ( $\times 11$ ) to show characteristic armature of polyps; (a) small portion nat. size.
7. Symportium putchrum, n. sp. Part of colony nat. size encrusting a sponge skeleton.
,, S. srlevobetemon liollikeri, n. sp. Portion enlarged ( $\times 5 \frac{1}{2}$ ) . Note the peculiar psendo-calya and the siphonozonids.

## Plate VIII.

Fig. 1. Pematula prendulu, n. sp. A pimmle. Note the rugose autozooids and the ova appearing through the semi-transparent walls.
2. Cluysoyorgia orientalis, Versluys. Portion enlarged to show the mode of branching and the characteristic architecture of the polyps.
, 3. Protocaulon intiom, n. sp. Part enlarged. Note the long polyps and the peculiar flagelliform tentacles.
4. Bathyntitum iurlicum, n. sp. Colony nat. size.
. 5. Stachyptilum maculatum, n. sp. Colony nat. size.
, 6. I'mbellula elongata, n. sp. Portion of autozooid cut open to show the embryos.
7. Protocaulon iurlicum, n. sp. Colony nat. size.
, ․ Antloptitum decipiens, n. sp. Part enlarged showing the reproductive bodies appearing through the thin body-walls.
" 9. Stachyptilum maculatum, n. sp. Part enlarged showing the strong autozooids and the conspicuous stellate siphonozooids.
10. Fumiculina gracilis, u. sp. Portion enlarged to show the arrangement of the autozooids and prominent projecting eight-lobed siphonozooids in an almost definite row on the metarachilial surface.

## Plate VIII.

Fig. 1. I'enuatula indica, n. sp. (a) Complete colony nat. size; (b) portion of rachis enlarged $(\times 10)$; $(c)$ part of a pinmule enlarged $(\times 10)$.
., 2. Muricella ben!alensis, n. sp. Twig enlarged ( $\times 8$ ).
. 3. I'mbollula purpurea, n. sp. Terminal portion nat. size.
., 4. Alyaricoines alcorlit, Simpson, n. \&. et sp. Colony nat. size.
,. う. Pematulu splentens, 11. sp. Portion of rachis with four pinmules $(\times 4)$.
, 6. Spontrules alcorlii, n. sp. Terminal portion ( $\times 10$ ).
," 7. Pennatula pentula, n. sp. Colony nat. size.
,, 8. Pematula reneris, n. sl'. Pinnule ( $\times 6$ ).
," 9. Cmbellula rlura, n. s]. Colony nat. size.
, 10. Pematula permlula, n. sp. I'innule ( $\times 6$ ).

Plate I.
Fig. 1. Acamptoforyia circium, n. sp.
-. Distirloptilum gracile, Vervill.
, 3. Stemella loorieda, n. sp.

Fig. 4. Fumiculina gretilis, 1. sp.
," 5. Acanthomuriced remosa, n. g. et sp.
, 6. Chrysogorgia irregulatis, n. sp.
,, T. Sarcophytum abervans, n. sir.
,, \&. Sympodium tecipiens, n. sp.
9. Calicogorgiat inbotincta, n. g. et sp.
,, 10. Calicommia imestigatoris, n. g. et sp.
, 11. Sarcophytum aberrans, n. sp. (more highly magmified).
1... Acandlomuricea spicate, n. g. et sp.
13. Pleurocorallium rariabite, n. sp.
,, 14. Acanella rigila, Wright and studer.
15. Scirpearefla alba, 11. s1.
16. Stachyptitum marmlatum, 11. sp.
, 17. Juncella elongata, Pallas.
,, 18. Symportizm inticum, n. sp.
,19. Sterearantlia intica, n. g. et sp.
,20. Paramuricea indica, n. s1).
Plate $X$.
Agaricoites alcoclit, Simpson, n, g. et spl.
Fig. 1. Typical colony nat. size.
2. Zooid enlargel ( $\times 10$ ).
3. Young colony (nat. size) showing first stage in the develument of the verruce.
4. Enlarged polyp and stem canal shorring the method of growth.
5. Vertical section through a coluny to show the relations of the parts (nat. size).
6. Enlarged section of one of the stem canals $(\times 60)$.
7. Asulcar filament enlarged ( $\times 80$ ) .
8. Cross section through the introverted anthocodia ( $\times 30$ ).
9. Vertical section through a verruca and stem canal with the zomid introverted ( $\times 10$ ).
10. Pale yellow spicules of the anthocodia.
11. Enlarged section through the stomodæum showing the suleus $(\times 70)$.

I $\because$. Transparent spicules of the partition walls.
13. Transparent spienles of the outer wall of the trunk.
14. Transparent and pale yellow spicules of the vermea-rise.
15. Spicule enlarged $(\times 490)$ to show the organic axis.
16. Surface view of a verruca-dise, the zood being introverted ( $\times 7$ ).
17. Enlargel section thongh a wall showing the spicule cavities and the residue of the organic axis ( $\times 15$ ).
18. Pale yellow spicules of the tentacles.
. 19. Section throngh the trme showing the mesenterial filaments passing into the stem canals $(\times 60)$.

## Plate I.

Fif. 1. Sarenphytum aberrans, n. sp. Stalked Colony without basal attachment. Slightly enlarged ( $\times 1 \frac{1}{2}$ ) .
., 2. Seterophytum cuberans, 11. sp. Excrustina Colony, (a) portion cnlarged $\left(\times 1 \frac{1}{3}\right)$, showing part of the spiral bare streak, at one place the cencnchyma overarching it, at another the coenenchyma completcly surrounding the support; ( $b$ ) distal end of an antozooid showing the arrangement of the pinnules on the tentacles; (c) colony reduced ( $\frac{1}{3} 11$. s.) in size showing the incrusting habit and the projecting siliccous support.
" 3. Sareophytum agaricoides, 11. sp. (Nat. size.) Note the characteristic antozooids; the siphonozooids (represented by white spots) are much more numerons than in the figure.
4. Spongodes alcocki, n. sp. $(\times 15)$. Two polyps showing the single projecting spicule of the Stuitzbiindel.
5. Paragorgiu splendens, 11. sp. (Nat. size.) Note the characteristic clusters of autozooids.
6. Keroëdes koreni, Wright and Studer ( $\times 10$ ). Small portion of a twig.
, 7. Keroëdes lioreni, Wright and Studer. Colony nat. size.
" 8. Huricella bengalensis, n. sp. Small portion enlarged ( $\times 20$ ). Note the large size of the spicules of the coencnclyma.
9. Pletrocorallium variabite, n. sp. Simall portion enlarged $(\times 8)$ showing the aronaceons crenenchyma and the stellate appearance of the retracted polyps.
.. 10. Wencella clomgreta. Pallas. Small portion enlarged $(\times 4)$.


## Plate II.

Fist. 1. Stechyodes allmomi, Wright and Studer. Axis of a colony to show mode of lomehing. (Nat. size.)
.. -. Acanthogorgia aspere, Pourtales. Colony nat. size.
.. 3. Chrgsogergia flexitis, Wright and Studer. Colony showing branching and arrangement of polyps.
, 4. Chrysogorgie inregutcris, u. sp. Part of a colony to show the indefinite mode of branching.
, 5. (a and b) Strchyodes rallmami, Wright and Studer. Obverse and reverse views of a small portion of a twig enlarged.
" 6. Symportium indicum, 11. sp. P'ortion enlarged showing burrowing polychret worm.
7. Symportium incrustans, 11. sp. P'art eularged to show the furrowing of the polyps, and also stages in retraction.


6


## Plate 11 I.

Fic. 1. Protoptitum medium, in. sp. Part enlarged. Note the irregular margins of the calyces.
2. Thouarella moseleyi, var. spicatu, 11. Portion of colony nat. size showing the mode of branching.
3. Paramuricer intica, n. sp. Part enlarged to show the markedly spinose character of the conenchyma.
4. Thonarella moseleyi, var. spicata, 11. Portion enlarged $(\times 20)$. Note the spines on the pre-opercular seales.
, 5. Lepidogorgice vervilli, Wright and Studer. (a) Small portion of colony nat. size; (b) part enlarged $(\times 15)$ showing the dense armature and a partially retracted polyp.
6. Chirysogorgie intiea, n. sp. ( $\times 1 \frac{1}{2}$ ). To show morle of branching and arrangement of polyps.
7. Acamptogergia bebryeoites, var: mbusta, n. Fragment nat. size.
8. Acamptogoryia bebrycoides, vas, iolnsta, 11. Twig enlarged $(\times 10)$. Note the short and cylindrical polyps and the almost horizontal operculum.


## Plate IV.

Fig. 1. Komërices gracilis, Whitelegge. Portion of colony nat. size.
2. Keroeindes aracitis, Whitelegge. Part of twig enlarged $(\times 10)$. Note the large and regularly arranged spienles.
", 3. Koreërles giracilis, Whitelegge. Portion of main stem cularged ( $\times 10$ ) showing the smaller and more indefinitely arranged spicules.
4. Parisis indica, n. sp. Branch nat. size.
5. Parisis intica, n. sp. Part of axis enlarged showing the elusters of . cpizoic Palythoar
,. 6. Simmuntium temue, n. sp. Colony $\left(\times 1 \frac{1}{2}\right)$ showing the support of siliceous sponge spicules.
7. Distirhoptilum gracile, Verrill. Part enlarged $(\times 10)$. Note the small, scarcely projecting polyps.
" 8. Parisis indira, n. sp. Basal portion $\left(\times \frac{1}{2}\right)$ showing the lise of attachment.
9. I'erivis indien, n. sp. Part of a branch eularged $(\times 1 \underset{2}{1})$. Contrast the prometions of node and internode with those in fig. 8.
10. Chironephthya macrospiculate, n. sp. Terminal portion enlarged ( $\times 12$ ). Note the enomons spindles of the ceenenchyma.
11. Suberogorgia bollikeri, var. ceytomensis, Thomson. Branch nat. size.
12. Suberogongio heiltiteri, var. ecylonensis, Thomson. Portion enlarged $(\times 10)$.


## Plate V.

Fig. 1. Acanthomericea ramose, n. g. et sp. Terminal twig enlarged ( $\times 10$ ) . side to which the polyps are directed.
.. こ. Stereacantlice indict, 11. g. et sp. Part eularged ( $\times 10$ ).
, 3. Acamptogorgia circhem, n. sp. Twig $(\times 2)$. Note the spinose appearance.
" 4. Acanthomurivea remosa, 11. g. et sp. Reverse side of fig. 1.
, 5. Umbellula rosed, n. sp. Rachis nat. size.
" (5. Ilenocorallinm variculite, u. sp. Portion cularged ( $\times 12$ ). Note the arenaceons appearance of the couenchyma and the stellate form of the polyps.
, 7. Juncella miniacea, 11. sp. Colony mat. size. Note gall.
, 8. Acanthommicee ramose, n. g. et sp. Branch $\left(\times 1 \frac{1}{2}\right)$.
:. 9. Paragorgia splendens, u. sp. Branch nat. size.
, 10. Astrogorgite melra, n. sp. Terminal portion of twig $(\times 10)$.
, 11. Acis spinose, n. sp. l'art of twig enlarged ( $\times 14$ ). Note the difference in the spiculation of contignous portions; also the enomons plate-like spicules.
, 12. Juncella miniarece, n. sp. Part enlarged ( $\times 1 \cdot 2$ ) showing the characteristic polyps.
,. 13. Stenella horriter, 11. sl. Temminal twig enlarged $(\times 12)$. Note the rugose appearance.
14. P'trengorgiu splentens, 11. sp. Cluster of antozonids enlarged ; also showing the arrangement of the siphonozooids.
:15. Aconthogorgia aspera, l'ourtales. Side and end view of polyps $(\times 10)$.


## Plate VI.

Fis. 1. Thesioides inermis, n. g. et sp. Part of colony nat. size.
", - Thesioides inermis, n. g. et sp. Portion cularged ( $\times 6$ ). Note the peculiar tentacles.
" 3. Chrysogorgice dichotoma, n. sp. Axis nat. size to show mode of branching.
, t. Acamptogorgin belryeoides, von Koch. Branch ( $\times 2$ ).
5. Acamptogorgice behngcoides, vou Koch. Terminal twig enlargel $(\times 10)$.
, 6. Cerctorsis gracilis, n. sp. Part enlarged $(\times 11)$ to show characteristic armature of polyps ; (a) small portion nat size.
.. 7. Sympontiom pmlelerum, 11. sp. Part of colony nat. size encrusting a sponge skeleton.
" 8. Sclerobelemnom kölfikeri, n. sp. Portion enlarged $\left(\times 5 \frac{1}{2}\right)$. Note the peculiar psendo-calyx and the siphonozooids.


## Plate ViI.

Firt. 1. Pennetula pendulu, n. sp. A pinnule. Note the rugose antozooids and the ora appearing through the semi-transparent walls.
2. Chrysogorgin mientalis, Versluys. Portion enlarged to show the mode of hameding amd the characteristic architecture of the polyps.
" 3. Protoctultor indicum, n1. sl. Part enlarged. Note the long polyps and the peeuliar Hagelliform tentacles.
.. 4. Bathyptilum indienm, s. sp. Colony nat. size.
,, 5. Strechyptilum meculutum, n. sp. Colony nat. size.
, G. L'mbellula elongata, n. sp. Portion of autozooid ent open to show the embryos.
, 7. Protocoulon indicm, 11. sp. Colony mat. size.
" 8. Anthoptilum decipiens, 11. sp. Part enlarged showing the reproductive bodies appearing through the thin body-walls.
: 9. Stachyptilum mucnlatum, n. sq. Part enlarged showing the strong autozooids and the conspicuous stellate siphonozooids.
,, 10. Fumiculinu gracilis, n. sp. Portion enlarged to show the arrangement of the autozooids and prominent projecting eight-lobed siphonozooids in an almost definite row on the metarachidial surface.


## Plate: VIll.

Pis. 1. Pematula indica, n. sp. ( ( 1 ) Complete colony nat. size; (b) portion of rachis enlarged $(\times 10)$; (c) part of a pionule enlarged $(\times 10)$.
., 2. Whricella bengalensis, u. sp. 'Twig enlarged ( $\times 8$ ).
, 3. Umbellula purpurea, n. sp. Terminal portion nat. size.
" t. Agaricoides alcocki, Simpson, n. g. et sp. Colony nat. size.
, 5. Pematala splendens, n. sp. Portion of rachis with four pinuules $(\times 4)$.
., 6. Stpongodes alcocki, 11. sp. Terminal portion $(\times 10)$.
., 7. Pernatula pendula, n. sp. Colony nat. size.
, 8. Pennatula veneris, n. sp. Pinnule $(\times 6)$.
9. Umbellula durn, n. sp. Colony nat. size.
10. Pematula pendula, 11. sp. Pinmule $(\times 6)$.

E.Walson, Cambriüge

## Plate 1X.

Fig. 1. Acamptogorgia circium, n. sp.
,. 2. Distichoptilum gracile, Verrill.
23. Stenella horvida, n. sp.
,, 4. Funiculina gracilis, n. sp.
.. 5. Acanthomuricea romosa, n. g. et sp.
:6. Cheysogorgia irregularis, n. sp.
, 7. Sarcophytum aberians, n. sp.
,, 8. Sympodium decipiens, n. sp.
9. Calicogorgia rubrotincta, n. g. et sp.
" 10. Calicogorgia investigatoris, n. g. et sp.
,, 11. Sarcophytum aberrans, n. sp. (more highly magnified).
, 12. Acanthomuricea spicata, n. g. et sp.
13. Pleurocorallium variabite, n. sp.
,, 14. Acanella rigitle, Wright and Studer.
,15. Seirpearella alba, n. sp.
,16. Stachyptilum maculutum, n. sp.
17. Juncella elongate, Pallas.
18. Sympodium indicum, n. sp.
19. Stereacanthia indica, n. g. et sp.
,20. Paramuricea indica, n. sp.

6.

 7.


15

16.


19

5.

9.

17.


E Whsor, Zambrid

Plate X.
Agaricoides alcocki, Simpson, n. g. et sp.
Fig. 1. Typical colony nat. size.
, 2. Zooid enlarged ( $\times 10$ ).
., 3. Young colony (nat. size) showing first stage in the development of the vertuce.
"4. Enlargel polyp and stem canal showing the method of growth.
" 5. Vertical section through a colony to show the relations of the parts (nat. size).
, 6. Enlarged section of one of the stem eanals ( $\times 60$ ).
, 7. Asulcar filament enlarged ( $\times 80$ ).
" 8. C'ross section through the introverted anthooodia ( $\times 30$ ).
," 9. Vertical section throng a verruea and stem canal with the zooid introverted ( $\times 10$ ).
., 10. Pale yellow spieules of the anthocorlia.
:, 11. Enlarged section through the stomodæum showing the sulcus $(\times 70)$.
, 12. Trausparent spicules of the partition walls.
, 13. Transparent spicules of the outer wall of the trunk.
, 14. Transparent and pale yellow spicules of the verruca-disc.
, 15. Spicule enlarged $(\times 490)$ to show the organic axis.
, 16. Surface view of a verruea-dise, the zooid being introverted $(\times 7)$.
. 17. Enlarged section through it wall showing the spicule cavities and the residue of the organic axis $(\times 15)$.
, 18. Pale yellow spicules of the tentacles.
19. Sertion through the trunk showing the mesenterial filaments passing into the stem canals ( $\times 60$ ).



[^0]:    ${ }^{1}$ I wish to thank Professor A. Alcock, LL.D., F.R.S., Superintendent of the Indian Museum, for giving me the opportunity of studying this fine collection of beantiful forms, and the Trustees of the Indian Museum for a grant towards expenses. Through the Carnegie Trust I was able to secure the help of Mr. W. D. Henderson, joint anthor of this memoir, whose work in this connection was in part done during his tenure of a Carnegic Scholarship and Fellowship. We are greatly indebted to Mr. George Davidson, artist, for the skill and patience which he has bestowed on the illustrations. We think that the engraver, Mr. Elwin Wilson, also deserves to be congratulated on his success, for the coloured plates in particular presented unsual difficulties which have been happily overcome. Finally, I wish to acknowletge my great indehtedness to my private assistant, Mr. James J. Simpson, M.A., B.Se., without whose aid the completion of the memoir would have been much delayed. His shill will be seen in the deseription of the remarkable genus Agaricoilcs. Dr. J. Versluys, of Amsterdam, most generously gave me lis notes un Culiyoryia indicu, and Professor S. J. Hickson, F.R.S., of Victoria University, Manchester, was kind enough to allow me to consult his fine collection, and to lend me some of the literature.-.J. A. 'T.

[^1]:    ${ }^{1}$ It is possible that our Funiculina quadrungularis is the young form of some other species of F'uniculinc, and that our Patonarice willemoësii is the young form of some already known species of Patonariu.

[^2]:    ${ }^{1}$ For a description of this remarkable new type we are indebted to Mr. James J. Simpon, M..... 13.Sc. See Zool. Anzeig. xxix. (1905) p1. 263-271, 19 figs.

[^3]:    ${ }^{1}$ On the larger branches three was the usual number.-J. A. T.

